The evolving customer demands have significantly influenced the operational landscape of agricultural companies, including the transformation of their supply chains. As a response, many organizations are increasingly adopting green supply chain practices. This paper focuses on the initial step of selecting a green supplier, using the case study of the Semberka Company. The objective is to align the company with customer requirements and market trends. Expert decision making, grounded in linguistic values, was employed to facilitate the transformation of these values into fuzzy numbers and subsequently derive rough number boundaries. Ten economic-environmental criteria were identified, and six suppliers were evaluated against these criteria. The fuzzy rough LMAW (Logarithm Methodology of Additive Weights) method was employed to determine the criteria weights, with emphasis placed on the quality criterion. The fuzzy rough MABAC (Multi-Attributive Border Approximation Area Comparison) method was then utilized to rank the suppliers and identify the top performer. The validity of the results was established through validation techniques and sensitivity analysis. This research contributes a novel approach to green supplier selection, employing the powerful tool of fuzzy rough sets. The flexible nature of this approach suggests its potential application in future investigations. The limitation of this study is more complicated calculations for the decision maker. However, this approach is adapted to human thinking and minimizes ambiguity and uncertainty in decision making, and in future research, it is necessary to combine this approach with other methods of multi-criteria analysis.
Ankylosing spondylitis is a serious ailment that affects people, and the first signs or symptoms usually occurr between the ages of 15 and 45. While the condition is mostly prevalent in men, women are not immune to this disease. This problem is diagnosed with a combination of clinical history and X-rays, pathology and HLAB27 test. The aim of this case study is to demonstrate how macroscopic and microscopic analysis can be used for identification of the disease from a forensic point of view. In April 2018, we exhumed 11 remains near the city Višegrad, twenty-five years after the last war. All the remains were completely skeletonized. The skeleton of a female was specific and shaped like a bamboo branch, with a partial knitting of vertebral bodies in the lumbar region of spine and with total knitting in the thoracic part. The spinous processes were completely knitted. Her son gave informations for verbal autopsy that she had trouble walking and doing normal activities during life. Samples for analysis and pathological diagnostics were used to determine the real bone condition for forensic purposes. To our best knowledge our case is first one in the literature which combines macroscopic and microscopic analysis of AK in exhumed skeletal remains after 25 years of death in modern era of Europe.
Survivin, a well-known member of the inhibitor of apoptosis protein family, is upregulated in many cancer cells, which is associated with resistance to chemotherapy. To circumvent this, inhibitors are currently being developed to interfere with the nuclear export of survivin by targeting its protein-protein interaction (PPI) with the export receptor CRM1. Here, we combine for the first time a supramolecular tweezer motif, sequence-defined macromolecular scaffolds, and ultrasmall Au nanoparticles (us-AuNPs) to tailor a high avidity inhibitor targeting the survivin-CRM1 interaction. A series of biophysical and biochemical experiments, including surface plasmon resonance measurements and their multivalent evaluation by EVILFIT, reveal that for divalent macromolecular constructs with increasing linker distance, the longest linkers show superior affinity, slower dissociation, as well as more efficient PPI inhibition. As a drawback, these macromolecular tweezer conjugates do not enter cells, a critical feature for potential applications. The problem is solved by immobilizing the tweezer conjugates onto us-AuNPs, which enables efficient transport into HeLa cells. On the nanoparticles, the tweezer valency rises from 2 to 16 and produces a 100-fold avidity increase. The hierarchical combination of different scaffolds and controlled multivalent presentation of supramolecular binders was the key to the development of highly efficient survivin-CRM1 competitors. This concept may also be useful for other PPIs.
Due to their appealing physiochemical properties, particularly in the pharmaceutical industry, deep eutectic solvents (DESs) and ionic liquids (ILs) are utilized in various research fields and industries. The presented research analyzes the thermodynamic properties of a deep eutectic solvent created from natural molecules, menthol and lauric acid in a 2:1 molar ratio, and an ionic liquid based on two active pharmaceutical ingredients, benzocainium ibuprofenate. Initially, the low solubility of benzocainium ibuprofenate in water was observed, and a hydrophobic natural deep eutectic mixture of menthol:lauric acid in a 2:1 ratio was prepared to improve benzocainium ibuprofenate solubility. In order to determine the solvent properties of DESs and ILs mixtures at different temperatures and their molecular interactions to enhance the solvent performance, the apparent molar volume, limiting apparent molar expansibility, and viscosity B coefficient were estimated in temperature range from 293.15 K to 313.15 K and varying concentration of benzocainium ibuprofenate.
The 12-lead electrocardiogram (ECG) is a first-line diagnostic tool for patients with cardiac symptoms. As observed during the COVID-19 pandemic, the ECG is essential to the initial patient evaluation. The novel KardioPal three-lead-based ECG reconstructive technology provides a potential alternative to a standard ECG, reducing the response time and cost of treatment and improving patient comfort. Our study aimed to evaluate the diagnostic accuracy of a reconstructed 12-lead ECG obtained by the KardioPal technology, comparing it with the standard 12-lead ECG, and to assess the feasibility and time required to obtain a reconstructed ECG in a real-life scenario. A prospective, nonrandomized, single-center, adjudicator-blinded trial was conducted on 102 patients during the COVID-19 pandemic at the Dedinje Cardiovascular Institute in Belgrade. The KardioPal system demonstrated a high feasibility rate (99%), with high specificity (96.3%), sensitivity (95.8%), and diagnostic accuracy (96.1%) for obtaining clinically relevant matching of reconstructed 12-lead compared to the standard 12-lead ECG recording. This novel technology provided a significant reduction in ECG acquisition time and the need for personnel and space for obtaining ECG recordings, thereby reducing the risk of viral transmission and the burden on an already overwhelmed healthcare system such as the one experienced during the COVID-19 pandemic.
Sustainable development is a big global challenge for the 21st century. In recent years, a class of emerging contaminants known as microplastics (MPs) has been identified as a significant pollutant with the potential to harm ecosystems. These small plastic particles have been found in every compartment of the planet, with aquatic habitats serving as the ultimate sink. The challenge to extract MPs from different environmental matrices is a tangible and imperative issue. One of the primary specialties of research in environmental chemistry is the development of simple, rapid, low-cost, sensitive, and selective analytical methods for the extraction and identification of MPs in the environment. The present review describes the developments in MP extraction methods from complex environmental matrices. All existing methodologies (new, old, and proof-of-concept) are discussed and evaluated for their potential usefulness to extract MPs from various biotic and abiotic matrices for the sake of progress and innovation. This study concludes by addressing the current challenges and outlining future research objectives aimed at combating MP pollution. Additionally, a set of recommendations is provided to assist researchers in selecting appropriate analytical techniques for obtaining accurate results. To facilitate this process, a proposed roadmap for MP extraction is presented, considering the specific environmental compartments under investigation. By following this roadmap, researchers can enhance their understanding of MP pollution and contribute to effective mitigation strategies.
BACKGROUND AND PURPOSE: Intra-arterial thrombolytics may be used to treat distal vessel occlusions, which cause incomplete reperfusion following mechanical thrombectomy. Because immediate reperfusion after intra-arterial thrombolytics occurs rarely, the aim of this study was to assess the delayed effect of intra-arterial thrombolytics using follow-up perfusion imaging. MATERIALS AND METHODS: We included patients from a prospective stroke registry (February 2015 to September 2022) who had undergone mechanical thrombectomy and had incomplete reperfusion (expanded TICI 2a–2c) and available 24 hour perfusion imaging. Perfusion imaging was rated as delayed reperfusion if time-sensitive perfusion maps did not show wedge-shaped delays suggestive of persisting occlusions corresponding to the post-mechanical thrombectomy angiographic deficit. Patients treated with intra-arterial thrombolytics were compared with controls using multivariable logistic regression and inverse probability of treatment weighting matching for baseline differences and factors associated with delayed reperfusion. RESULTS: The median age of the final study population (n = 459) was 74 years (interquartile range, 63–81 years), and delayed reperfusion occurred in 61% of cases. Patients treated with additional intra-arterial thrombolytics (n = 40) were younger and had worse expanded TICI scores. After matching was performed, intra-arterial thrombolytics was associated with higher rates of delayed reperfusion (adjusted OR = 2.7; 95% CI, 1.1–6.4) and lower rates of new infarction in the residually hypoperfused territory after mechanical thrombectomy (adjusted OR = 0.3; 95% CI, 0.1–0.7). No difference was found in the rates of functional independence (90-day mRS, 0–2; adjusted OR = 1.4; 95% CI, 0.4–4.1). CONCLUSIONS: Rescue intra-arterial thrombolytics is associated with delayed reperfusion of remaining vessel occlusions following incomplete mechanical thrombectomy. The value of intra-arterial thrombolytics as a potential therapy for incomplete reperfusions after mechanical thrombectomy should be assessed in the setting of randomized controlled trials.
This paper presents a comparative analysis of the biomechanical characteristics of an external fixator with a frame made of two different materials (stainless steel and composite material) during anterior–posterior bending. Before the test itself, two representative configurations of the Sarafix fixator were selected for application on the lower leg and upper extremities under the designations B50 and C50, which are most widely used in orthopedic practice. The examination of the biomechanical characteristics of the external fixator was carried out using the structural analysis of the construction performance of the Sarafix fixator using the finite element method, the results of which were verified through experimental tests. The developed experimental and FEM models study the movement of the fracture crack and enable the determination of the stiffness of structural designs as well as the control of the generated stresses at the characteristic locations of the fixator. The results show that the fixator with a carbon frame has lower stresses at critical points in the construction compared to the fixator with a steel frame, in the amount of up to 49% (at the measuring point MT+) or up to 46% (at the measuring point MT−) for both fixture test configurations. The fixator with a carbon frame has greater displacements at the fracture site compared to the fixator with a steel frame, in the amount of up to 45% (for configuration B50) or up to 31% (for configuration C50). The stiffness of the structure for both test configurations of the fixator is lower in the fixator with a carbon frame compared to the fixator with a steel frame by up to 27%. Based on the findings of this study, we can conclude that a fixator with a steel frame has better biomechanical characteristics compared to a carbon frame.
In the current study, we assessed the hematological/biochemical alterations, histopathological changes in the liver, and blood cell disorders in Wistar rats exposed to a toxic concentration of carbon tetrachloride (CCl4) and the potential protective effect of a 30‐day oral extract of chokeberry (Aronia melanocarpa, AM). The concentration of AM (3.38 mg/kg) obtained by quantitative purification from AM fruit showed the highest antioxidant activity (AOA) in vitro and was used for oral ingestion. In addition to high AOA, high values of total phenols (85.334 mg/g), total phenolic acid (606.95 mg/g), total flavonids (22.10 mg/g), and total anthocyanins (11.01 mg/g) were recorded in chokeberry extract. CCl4 treatment caused serious liver injury, hepatocyte and blood cell impairment. AM extract given to rats before CCl4 application had a moderate hepatoprotective effect in comparison to after CCl4 application. White blood count and leukocytes were significantly altered by CCl4, however, the protective role of AM in leukocyte disorders was not established. A high number of microcytes, stomatocytes, anisocytes, and hemolyzed erythrocytes during CCl4 exposure was reduced by AM extract. Flower erythrocytes in the AM + CCl4 group were recorded. Supplementation with chokeberry extract without CCl4 caused hyperproteinemia and hyperalbuminemia. Although the results indicate a weak protective role for AM, it is nevertheless important for improved erythropoiesis and regulation of the development of anemia. The hepatoprotective role of AM was moderate, and the immune response was not proven. Daily consumption of chokeberry extract can improve health. However, the results of our study showed that the ingestion of AM extract at this dose with the highest AOA would have more effective effects if the supplementation were significantly increased.
Patients with oral cavity cancer are almost always treated with surgery. The goal is to remove the tumor with a margin of more than 5 mm of surrounding healthy tissue. Unfortunately, this is only achieved in about 15% to 26% of cases. Intraoperative assessment of tumor resection margins (IOARM) can dramatically improve surgical results. However, current methods are laborious, subjective, and logistically demanding. This hinders broad adoption of IOARM, to the detriment of patients. Here we present the development and validation of a high-wavenumber Raman spectroscopic technology, for quick and objective intraoperative measurement of resection margins on fresh specimens. It employs a thin fiber-optic needle probe, which is inserted into the tissue, to measure the distance between a resection surface and the tumor. A tissue classification model was developed to discriminate oral cavity squamous cell carcinoma (OCSCC) from healthy oral tissue, with a sensitivity of 0.85 and a specificity of 0.92. The tissue classification model was then used to develop a margin length prediction model, showing a mean difference between margin length predicted by Raman spectroscopy and histopathology of -0.17 mm.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više