Logo

Publikacije (45393)

Nazad

Scientific journals play a critical role in disseminating knowledge, and staying up to date with research findings in a particular field can be challenging given the vast number of journals and research topics available. Therefore, there is a need for researchers to occasionally summarize the main research topics in order to help fellow researchers navigate the contents more effectively. In this context, this article aims to review the research topics published in the Problems of Education in the 21st Century journal between 2018 and 2022. A total of 285 abstracts were retrieved from the Web of Science database and analyzed to identify the most common research topics and the contributing countries. The top 10 research topics identified were self-efficacy, distance education, professional development, critical thinking, foreign language, thinking skills, Covid-19, academic achievement, emotional intelligence, and special education. The authors of the papers came from 62 countries, with most of the papers coming from Türkiye, South Africa, Indonesia, Brazil, Slovakia, Czech Republic, Malaysia, Sweden, Lithuania, and Serbia. In conclusion, this study highlights the relevance and diversity of research topics in the Problems of Education in the 21st Century journal, underscoring the need for a nuanced, context-specific approach to education research. The findings of this study have important implications for researchers, policymakers, and educators seeking to address the key challenges and opportunities facing education in the 21st century. Keywords: content analysis, scientific journals, Problems of Education in the 21st Century, research topics

Muhammad Bilal Khan, Željko Stević, Abdulwadoud A. Maash, M. Noor, Mohamed S. Soliman

In this paper, we provide different variants of the Hermite–Hadamard (H⋅H) inequality using the concept of a new class of convex mappings, which is referred to as up and down harmonically s-convex fuzzy-number-valued functions (UDH s-convex FNVM) in the second sense based on the up and down fuzzy inclusion relation. The findings are confirmed with certain numerical calculations that take a few appropriate examples into account. The results deal with various integrals of the 2ρσρ+σ type and are innovative in the setting of up and down harmonically s-convex fuzzy-number-valued functions. Moreover, we acquire classical and new exceptional cases that can be seen as applications of our main outcomes. In our opinion, this will make a significant contribution to encouraging more research.

A. Kopitar, Jernej Repas, Larisa Janžič, M. Bizjak, Tina Vesel, N. Emeršič, M. Avramovič, A. Ihan et al.

Introduction Although children seem to be less susceptible to COVID-19, some of them develop a rare but serious hyperinflammatory condition called multisystem inflammatory syndrome in children (MIS-C). While several studies describe the clinical conditions of acute MIS-C, the status of convalescent patients in the months after acute MIS-C is still unclear, especially the question of persistence of changes in the specific subpopulations of immune cells in the convalescent phase of the disease. Methods We therefore analyzed peripheral blood of 14 children with MIS-C at the onset of the disease (acute phase) and 2 to 6 months after disease onset (post-acute convalescent phase) for lymphocyte subsets and antigen-presenting cell (APC) phenotype. The results were compared with six healthy age-matched controls. Results All major lymphocyte populations (B cells, CD4 + and CD8+ T cells, and NK cells) were decreased in the acute phase and normalized in the convalescent phase. T cell activation was increased in the acute phase, followed by an increased proportion of γ/δ-double-negative T cells (γ/δ DN Ts) in the convalescent phase. B cell differentiation was impaired in the acute phase with a decreased proportion of CD21 expressing, activated/memory, and class-switched memory B cells, which normalized in the convalescent phase. The proportion of plasmacytoid dendritic cells, conventional type 2 dendritic cells, and classical monocytes were decreased, while the proportion of conventional type 1 dendritic cells was increased in the acute phase. Importantly the population of plasmacytoid dendritic cells remained decreased in the convalescent phase, while other APC populations normalized. Immunometabolic analysis of peripheral blood mononuclear cells (PBMCs) in the convalescent MIS-C showed comparable mitochondrial respiration and glycolysis rates to healthy controls. Conclusions While both immunophenotyping and immunometabolic analyzes showed that immune cells in the convalescent MIS-C phase normalized in many parameters, we found lower percentage of plasmablasts, lower expression of T cell co-receptors (CD3, CD4, and CD8), an increased percentage of γ/δ DN Ts and increased metabolic activity of CD3/CD28-stimulated T cells. Overall, the results suggest that inflammation persists for months after the onset of MIS-C, with significant alterations in some immune system parameters, which may also impair immune defense against viral infections.

A. Adisa, M. Bahrami-Hessari, A. Bhangu, C. George, Dhruva Ghosh, J. Glasbey, P. Haque, J. Ingabire et al.

Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries.

M. Aylett, Randy Gomez, E. Sandry, S. Šabanović

Markus and Kitayama suggests Western centric culture has a bias to the independent rather than the interdependence self. We argue that this has resulted in a bias for social robots to be assistants, companions, wing-men and one-to-one carers. Thus, the social in most commercial social robots is a simulated social interaction with a single user, an echo chamber of unnecessary interaction that inevitability creates systems that obstruct social interaction rather than encourage it. The resulting robot flunkies, yes-men and pretend friends have little long term utility. In contrast, we argue that rather it is as mediators, facilitators and working within human communities and groups that offers the real opportunity for social robots.

E. Petri, T. Reynaudo, R. Postoyan, D. Astolfi, D. Nešić, S. Raël

Effective management and just-in-time maintenance of lithium-ion batteries require the knowledge of unmeasured (internal) variables that need to be estimated. Observers are thus designed for this purpose using a mathematical model of the battery internal dynamics. It appears that it is often difficult to tune the observers to obtain good estimation performances both in terms of convergence speed and accuracy, while these are essential in practice. In this context, we demonstrate how a recently developed hybrid multiobserver can be used to improve the performance of a given observer designed for an electrochemical model of a lihium-ion battery. Simulation results, obtained with standard parameters values, show the estimation performance improvement using the proposed method.

D. Mategula, C. Mitambo, W. Sheahan, Nyanyiwe Masingi Mbeye, Austin Gumbo, Collins Kwizombe, J. Kawonga, Benard Banda et al.

Background: Malawi's National Malaria Control Programme (NMCP) is developing a new strategic plan for 2023-2030 to combat malaria and recognizes that a blanket approach to malaria interventions is no longer feasible. To inform this new strategy, the NMCP set up a task force comprising 18 members from various sectors, which convened a meeting to stratify the malaria burden in Malawi and recommend interventions for each stratum. Methods: The burden stratification workshop took place from November 29 to December 2, 2022, in Blantyre, Malawi, and collated essential data on malaria burden indicators, such as incidence, prevalence, and mortality. Workshop participants reviewed the malaria burden and intervention coverage data to describe the current status and identified the districts as a appropriate administrative level for stratification and action. Two scenarios were developed for the stratification, based on composites of three variables. Scenario 1 included incidence, prevalence, and under-five all-cause mortality, while Scenario 2 included total malaria cases, prevalence, and under-five all-cause mortality counts. The task force developed four burden strata (highest, high, moderate, and low) for each scenario, resulting in a final list of districts assigned to each stratum. Results: The task force concluded with 10 districts in the highest-burden stratum (Nkhotakota, Salima, Mchinji, Dowa, Ntchisi, Mwanza, Likoma, Lilongwe, Kasungu and Mangochi) 11 districts in the high burden stratum (Chitipa, Rumphi, Nkhata Bay, Dedza, Ntcheu, Neno, Thyolo, Nsanje, Zomba, Mzimba and Mulanje) and seven districts in the moderate burden stratum (Karonga, Chikwawa, Balaka, Machinga, Phalombe, Blantyre, and Chiradzulu). There were no districts in the low-burden stratum. Conclusion: The next steps for the NMCP are to review context-specific issues driving malaria transmission and recommend interventions for each stratum. Overall, this burden stratification workshop provides a critical foundation for developing a successful malaria strategic plan for Malawi.

Andi Alijagic, A. Hedbrant, Alexander Persson, M. Larsson, M. Engwall, E. Särndahl

Micro- and nanoplastics (MNPs) are emerging pollutants with scarcely investigated effects on human innate immunity. If they follow a similar course of action as other, more thoroughly investigated particulates, MNPs may penetrate epithelial barriers, potentially triggering a cascade of signaling events leading to cell damage and inflammation. Inflammasomes are intracellular multiprotein complexes and stimulus-induced sensors critical for mounting inflammatory responses upon recognition of pathogen- or damage-associated molecular patterns. Among these, the NLRP3 inflammasome is the most studied in terms of activation via particulates. However, studies delineating the ability of MNPs to affect NLRP3 inflammasome activation are still rare. In this review, we address the issue of MNPs source and fate, highlight the main concepts of inflammasome activation via particulates, and explore recent advances in using inflammasome activation for assessment of MNP immunotoxicity. We also discuss the impact of co-exposure and MNP complex chemistry in potential inflammasome activation. Development of robust biological sensors is crucial in order to maximize global efforts to effectively address and mitigate risks that MNPs pose for human health.

G. Aad, B. Abbott, K. Abeling, N. J. Abicht, S. Abidi, A. Aboulhorma, H. Abramowicz, H. Abreu et al.

A search is made for potential ccc[over ¯]c[over ¯] tetraquarks decaying into a pair of charmonium states in the four muon final state using proton-proton collision data at sqrt[s]=13  TeV, corresponding to an integrated luminosity of 140  fb^{-1} recorded by the ATLAS experiment at LHC. Two decay channels, J/ψ+J/ψ→4μ and J/ψ+ψ(2S)→4μ, are studied. Backgrounds are estimated based on a hybrid approach involving Monte Carlo simulations and data-driven methods. Statistically significant excesses with respect to backgrounds dominated by the single parton scattering are seen in the di-J/ψ channel consistent with a narrow resonance at 6.9 GeV and a broader structure at lower mass. A statistically significant excess is also seen in the J/ψ+ψ(2S) channel. The fitted masses and decay widths of the structures are reported.

Purpose: The main aim of this study was to examine and analyse the body composition of young soccer players across different age groups. Methods: A cross-sectional study was carried out among 126 young soccer players divided into age categories: U15 – 53 players (age=14.68±0.47); U17 – 51 players (age=16.47±0.50); U19 – 22 players (age=18.05±0.38). The subjects’ height was measured using an anthropometer, while their body composition was measured using the TANITA BC-420MA digital scale. Results: On average, soccer players in the U15 group had significantly lower body height, weight, body mass index and fat free mass than U17 and U19 players, but had a higher percentage of body fat (p < 0.05). In addition to the percent of body fat mass, which tends to significantly decrease with age, the results also demonstrate significant non-linear increases in body height, weight, and lean body composition concurrent with the players’ ages. Conclusion: These results indicate that younger soccer players have lower absolute values of morphological characteristics compared to senior players.

M. Barakovic, M. Pizzolato, C. Tax, U. Rudrapatna, S. Magon, T. Dyrby, C. Granziera, J. Thiran et al.

Axon radius is a potential biomarker for brain diseases and a crucial tissue microstructure parameter that determines the speed of action potentials. Diffusion MRI (dMRI) allows non-invasive estimation of axon radius, but accurately estimating the radius of axons in the human brain is challenging. Most axons in the brain have a radius below one micrometer, which falls below the sensitivity limit of dMRI signals even when using the most advanced human MRI scanners. Therefore, new MRI methods that are sensitive to small axon radii are needed. In this proof-of-concept investigation, we examine whether a surface-based axonal relaxation process could mediate a relationship between intra-axonal T2 and T1 times and inner axon radius, as measured using postmortem histology. A unique in vivo human diffusion-T1-T2 relaxation dataset was acquired on a 3T MRI scanner with ultra-strong diffusion gradients, using a strong diffusion-weighting (i.e., b = 6,000 s/mm2) and multiple inversion and echo times. A second reduced diffusion-T2 dataset was collected at various echo times to evaluate the model further. The intra-axonal relaxation times were estimated by fitting a diffusion-relaxation model to the orientation-averaged spherical mean signals. Our analysis revealed that the proposed surface-based relaxation model effectively explains the relationship between the estimated relaxation times and the histological axon radius measured in various corpus callosum regions. Using these histological values, we developed a novel calibration approach to predict axon radius in other areas of the corpus callosum. Notably, the predicted radii and those determined from histological measurements were in close agreement.

Manon Edde, Guillaume Theaud, M. Dumont, Antoine Théberge, Alex Valcourt-Caron, G. Gilbert, Jean-Christophe Houde, Loïka Maltais et al.

Assessing the consistency of quantitative MRI measurements is critical for inclusion in longitudinal studies and clinical trials. Intraclass coefficient correlation and coefficient of variation were used to evaluate the different consistency aspects of diffusion‐ and myelin‐based MRI measures. Multi‐shell diffusion and inhomogeneous magnetization transfer data sets were collected from 20 healthy adults at a high‐frequency of five MRI sessions. The consistency was evaluated across whole bundles and the track‐profile along the bundles. The impact of the fiber populations on the consistency was also evaluated using the number of fiber orientations map. For whole and profile bundles, moderate to high reliability of diffusion and myelin measures were observed. We report higher reliability of measures for multiple fiber populations than single. The overall portrait of the most consistent measurements and bundles drawn from a wide range of MRI techniques presented here will be particularly useful for identifying reliable biomarkers capable of detecting, monitoring and predicting white matter changes in clinical applications and has the potential to inform patient‐specific treatment strategies.

Ensar Abazović, Erol Kovačević, Josipa Nakić, S. Peharec, Armin H. Paravlic

The large body of published literature has shown that the effects of strength training can transfer from trained to untrained homologous limb muscles after unilateral training. These effects on strength have been shown to be very specific to the type and speed of training contraction. The aim of this study was to investigate the effects of a 4-week unilateral slow and fast velocity isokinetic concentric training, to compare the effects, and thus investigate whether these effects are speed-specific. Forty-four healthy female students allocated to slow training, fast training, or control performed 12 isokinetic concentric-concentric plantar/dorsal flexors training sessions (3 × 4 weeks) using their nondominant leg. Participants in the two experimental groups showed statistically significant gains in strength in both the trained (ranging from 8 to 41%) and untrained leg (5–26%), thus showing cross-education on strength effects. The present study demonstrated that 4 weeks (12 training sessions) of unilateral isokinetic resistance training in the concentric mode improved the strength of contralateral, untrained homologous muscles to the same extent, regardless of the contraction velocity used in females. Furthermore, the amount of concentric overload (50% more than during 60°/s) did not appear to affect the increase in strength gains. Therefore, practitioners are encouraged to use both training speeds when strength gains in the contralateral leg are the primary goal. If the training time is limited, however, training with a higher contraction speed is recommended.

Mirjana Đorđević, N. Glumbić, Haris Memisevic, B. Brojčin, Š. Golubović

Parents are essential members of the multidisciplinary teams supporting children with autism. Examining parents’ priorities in the field of treatment options for children with autism can be very helpful to educators and therapists in the selection of appropriate treatments. The goal of the present study was to explore the treatment priorities which parents may have for their children with autism in Serbia. Another goal was to examine the relationship between parents’ priorities and children’s current level of functioning. The sample for this study consisted of 141 parents who completed The survey of treatment priorities. The results showed that parents ranked as their highest priorities the areas of Communication Skills, Community Living, and Social Relationships. These findings can help educators and therapists create treatment plans for children with autism that are aligned with parents’ priorities.

R. Oljača, Borivoj Krstić, D. Stanković, Jelena Davidović-Gidas

Plants are sessile organisms that are under the constant influence of the environmental conditions in which they grow. Any change in "inanimate" factors that have a significant impact on plant growth and development is collectively referred to as "abiotic stress". Extreme temperatures, especially in changed climatic conditions, are one of the most harmful abiotic factors, which cause heat stress in plants. The effects of high temperatures can be manifested through various morphological, physiological and genetic changes in the plant organism. Generally speaking, plants can be divided into three groups according to temperature requirements: psychrophilic plants, mesophilic plants and thermophilic plants. Most woody species belong to the group of mesophilic plants, which require temperatures between 10 and 30 °C for successful growth and development. As the temperature changes on a daily and seasonal basis in relation to the optimal range, certain changes occur in the plant organism that are necessary to maintain cell growth and homeostasis. Regardless of their ability to adapt to temperature oscillations, plants that have been exposed to temperatures above the optimal level for a long time can show symptoms of irreversible damage, which manifest as heat stress. Generally speaking, this type of stress is considered to occur when the temperature is 10- 15 °C higher than usual at some time of the year, and lasts long enough to cause irreversible damage or disturbances in plant growth and development. As the intensity, duration and degree of temperature change change, so do the various effects of heat stress on plants. In order to survive, plants must adapt to changes in environmental conditions through a specific response that depends on the physiology and morphology of a species. According to their level of tolerance to high temperatures, plants can be divided into three categories: heat-sensitive, relatively heat-sensitive, and heattolerant. The shape and strength of tolerance to high temperatures mostly depend on the plant species, tissue type and cells that are exposed to negative influences. The increase in ambient temperature can also jeopardize the productivity of agricultural crops and forest trees, which has been visible in recent decades in light of climate change and projections regarding the security of supply of the growing population on Earth. Injuries resulting from high temperatures during a fire can initiate a cascade of complex mechanisms that affect the physiology of trees after a fire. The discovery of exact physiological mechanisms and corresponding specific injuries that occur on individual trees, as well as in forest ecosystems, are the focus of intensive modern research. Recent studies have made critical strides in understanding the physiological processes in trees that manifest after fire injuries, and these injuries can affect the tree in combination with some other stressful conditions, such as drought and insect and pathogen attacks. The paper presents a conceptual framework that combines all these processes, their mutual interactions and possible responses, and puts these plant responses in the context of existing hypotheses about the impacts of specific disturbances on plants and ecosystems. By focusing on carbon and water as the main factors in the functioning of the plant organism, this paper presents cambium/phloem necrosis and xylem damage as the main effects of fire injuries. The resulting lack of carbon and hydraulic dysfunction of plants are associated with drought and insect attack. Assessing the precise relationships of the processes presented will be crucial to fully understanding how fires can affect tree functionality and will help improve fire risk assessment and predict tree mortality models. Knowledge of the physiological responses of trees is important for a better assessment of ecosystem dynamics after a fire and their interaction with climate disturbances, and especially taking into account the predicted increase in the frequency and intensity of fires.

Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više