Logo

Publikacije (18003)

Nazad
Awk Yeung, O. Litvinova, N. Bragazzi, Yousef Khader, Md Mostafizur Rahman, Zafar Said, Robert S. H. Istepanian, Anastasios Koulaouzidis et al.

Aim: This study aimed to identify and analyze the top 100 most cited digital health and mobile health (m-health) publications. It could aid researchers in the identification of promising new research avenues, additionally supporting the establishment of international scientific collaboration between interdisciplinary research groups with demonstrated achievements in the area of interest. Methods: On 30th August, 2023, the Web of Science Core Collection (WOSCC) electronic database was queried to identify the top 100 most cited digital health papers with a comprehensive search string. From the initial search, 106 papers were identified. After screening for relevance, six papers were excluded, resulting in the final list of the top 100 papers. The basic bibliographic data was directly extracted from WOSCC using its “Analyze” and “Create Citation Report” functions. The complete records of the top 100 papers were downloaded and imported into a bibliometric software called VOSviewer (version 1.6.19) to generate an author keyword map and author collaboration map. Results: The top 100 papers on digital health received a total of 49,653 citations. Over half of them (n = 55) were published during 2013–2017. Among these 100 papers, 59 were original articles, 36 were reviews, 4 were editorial materials, and 1 was a proceeding paper. All papers were written in English. The University of London and the University of California system were the most represented affiliations. The USA and the UK were the most represented countries. The Journal of Medical Internet Research was the most represented journal. Several diseases and health conditions were identified as a focus of these works, including anxiety, depression, diabetes mellitus, cardiovascular diseases, and coronavirus disease 2019 (COVID-19). Conclusions: The findings underscore key areas of focus in the field and prominent contributors, providing a roadmap for future research in digital and m-health.

C. Nievergelt, A. Maihofer, Elizabeth G Atkinson, Chia-Yen Chen, Karmel W Choi, Jonathan R. I. Coleman, N. Daskalakis, Laramie E. Duncan et al.

Maja Bradarić, Bart Kranstauber, Willem Bouten, Judy Shamoun-Baranes

Placing wind turbines within large migration flyways, such as the North Sea basin, can contribute to the decline of vulnerable migratory bird populations by increasing mortality through collisions. Curtailment of wind turbines limited to short periods with intense migration can minimize these negative impacts, and near‐term bird migration forecasts can inform such decisions. Although near‐term forecasts are usually created with long‐term datasets, the pace of environmental alteration due to wind energy calls for the urgent development of conservation measures that rely on existing data, even when it does not have long temporal coverage. Here, we use 5 years of tracking bird radar data collected off the western Dutch coast, weather and phenological variables to develop seasonal near‐term forecasts of low‐altitude nocturnal bird migration over the southern North Sea. Overall, the models explained 71% of the variance and correctly predicted migration intensity above or below a threshold for intense hourly migration in more than 80% of hours in both seasons. However, the percentage of correctly predicted intense migration hours (top 5% of hours with the most intense migration) was low, likely due to the short‐term dataset and their rare occurrence. We, therefore, advise careful consideration of a curtailment threshold to achieve optimal results. Synthesis and applications: Near‐term forecasts of migration fluxes evaluated against measurements can be used to define curtailment thresholds for offshore wind energy. We show that to minimize collision risk for 50% of migrants, if predicted correctly, curtailments should be applied during 18 h in spring and 26 in autumn in the focal year of model assessments, resulting in an estimated annual wind energy loss of 0.12%. Drawing from the Dutch curtailment framework, which pioneered the ‘international first’ offshore curtailment, we argue that using forecasts developed from limited temporal datasets alongside expert insight and data‐driven policies can expedite conservation efforts in a rapidly changing world. This approach is particularly valuable in light of increasing interannual variability in weather conditions.

P. Fazio, M. Mehic, Miroslav Voznak

With the low integration costs and quick development cycle of all-IP-based 5G+ technologies, it is not surprising that the proliferation of IP devices for residential or industrial purposes is ubiquitous. Energy scheduling/management and automated device recognition are popular research areas in the engineering community, and much time and work have been invested in producing the systems required for smart city networks. However, most proposed approaches involve expensive and invasive equipment that produces huge volumes of data (high-frequency complexity) for analysis by supervised learning algorithms. In contrast to other studies in the literature, we propose an approach based on encoding consumption data into vehicular mobility and imaging systems to apply a simple convolutional neural network to recognize certain scenarios (devices powered on) in real time and based on the nonintrusive load monitoring paradigm. Our idea is based on a very cheap device and can be adapted at a very low cost for any real scenario. We have also created our own data set, taken from a real domestic environment, contrary to most existing works based on synthetic data. The results of the study’s simulation demonstrate the effectiveness of this innovative and low-cost approach and its scalability in function of the number of considered appliances.

Anel Vejzović, F. Tandir, N. Hadžiomerović, R. Avdić, Nejra Dučić

Abstract: Veterinary practice commonly involves caring for domestic and companion animal. Since the trend of owning exotic pets is rapidly increasing, veterinarians often treat exotic patients as well. As a result, veterinarians are facing increased demands for specialized skills and knowledge. This article aims to provide a concise review of the anatomy of the vascular system in exotic animals and its relevance in clinical practice. Snakes, lizards and chelonians have 3-chambered heart with 2 atria and one partially divided ventricle whereas crocodiles have 4-chambered heart. It is important to consider these characteristics during the anesthesia in reptiles since blood shunting affects changes in blood pressure, oxygen level and other anesthetic parameters. In birds, the cardiovascular system is crucial in enduring the exhausting physical activities such as swimming, flying or diving and running. Birds have renal portal system which consists of cranial and caudal renal portal vein. The recommendation of avoiding drug application in the hindlimbs of birds is present for a long time. This is valid not only for birds, but for reptiles, amphibians and most fish. The ventricle of amphibians is trabeculated, which minimizes blood shunting through various anatomical and physiological features. During biphasic systole, the left and right side of the ventricle contract separately, directing blood in different parts of aortic arches. Due to the complexity of the exotic animals, thorough education added in veterinary curricula is needed. Keywords: amphibians, birds, cardiovascular, clinical, reptiles

Joël Wellauer, Fabienne Ziereisen, N. Sinha, A. Prescimone, Ajdin Velić, Franc Meyer, Oliver S Wenger

Substituting precious elements in luminophores and photocatalysts by abundant first-row transition metals remains a significant challenge, and iron continues to be particularly attractive owing to its high natural abundance and low cost. Most iron complexes known to date face severe limitations due to undesirably efficient deactivation of luminescent and photoredox-active excited states. Two new iron(III) complexes with structurally simple chelate ligands enable straightforward tuning of ground and excited state properties, contrasting recent examples, in which chemical modification had a minor impact. Crude samples feature two luminescence bands strongly reminiscent of a recent iron(III) complex, in which this observation was attributed to dual luminescence, but in our case, there is clear-cut evidence that the higher-energy luminescence stems from an impurity and only the red photoluminescence from a doublet ligand-to-metal charge transfer (2LMCT) excited state is genuine. Photoinduced oxidative and reductive electron transfer reactions with methyl viologen and 10-methylphenothiazine occur with nearly diffusion-limited kinetics. Photocatalytic reactions not previously reported for this compound class, in particular the C–H arylation of diazonium salts and the aerobic hydroxylation of boronic acids, were achieved with low-energy red light excitation. Doublet–triplet energy transfer (DTET) from the luminescent 2LMCT state to an anthracene annihilator permits the proof of principle for triplet–triplet annihilation upconversion based on a molecular iron photosensitizer. These findings are relevant for the development of iron complexes featuring photophysical and photochemical properties competitive with noble-metal-based compounds.

R. Galbusera, Matthias Weigel, Erik Bahn, Sabine A. Schaedelin, A. Cagol, Po-Jui Lu, M. Barakovic, L. Melie-García et al.

OBJECTIVE Finding a reliable preoperative predictor of complicated acute appendicitis (AA) has been a challenging diagnostic problem. The present study aimed to identify potential factors that may predict complicated AA in the pediatric emergency department (ED) based on routine, widely available laboratory tests on admission to the ED, including plasma sodium concentration. METHODS We retrospectively reviewed clinical and laboratory data of pediatric patients with AA who underwent emergency surgery at our department between January 2020 and December 2022. The patients were divided into two groups: histopathologically proven complicated AA (n = 80), and non-complicated AA (n = 155). RESULTS Complicated AA was associated with reduced plasma sodium and chloride concentrations (p < 0.001, both), decreased values of lymphocytes (p = 0.002), elevated C-reactive protein (CRP) ( p < 0.001), elevated values of white blood cells (WBC) and neutrophils (p = 0.012 and 0.001, respectively). In binomial logistic regression, increased levels of CRP and WBC, and decreased levels of sodium were predictors of complicated AA. The area under the ROC curve was 0.825 (95% CI 0.764, 0.886). CONCLUSION We identified mild hyponatremia and elevated CRP and WBC values as potential markers for distinguishing complicated from uncomplicated pediatric AA with implications for surgical approaches for treating complicated AA and conservative approaches for treating uncomplicated AA.

F. Tandir, R. Avdić, Nejra Dučić, Aida Džanković, Redžep Tandir, E. Šaljić, Anel Vejzović, N. Hadžiomerović

Root canal treatment of carnassial teeth in dogs is a common endodontic technique which aims to re-establish or maintain the health of the periapical tissues. In total, 43 dogs were used in this study. Root canal morphology was evaluated in 86 superior fourth premolars and 86 inferior first molars. Apical delta was present in 247 roots, while obliteration of the root canal was found in 11 roots. The most common type of apical delta of the roots of superior fourth premolars was type II, with up to 10 apical ramifications, while type IIIA, with 10–20 apical ramifications, was most commonly present in the roots of inferior first molars. Considering that knowledge of the morphology of root canals is essential for a successful endodontic procedure, the aim of this study was to analyze and compare the morphology of root canals in the carnassial teeth of German shepherds and mixed-breed dogs. Apical resection for the purpose of endodontic therapy of the superior fourth premolar and the inferior first molar is indicated at a length of 4 to 6 mm from the anatomical tip of the roots, which would completely remove the apical delta of these two teeth.

Arta Aliu, Daan H C A Bosch, D. Keszthelyi, A. Rezazadeh Ardabili, J. Colombel, Rachel Sawyer, H. Törnblom, Ailsa L Hart et al.

BACKGROUND Persistent gastrointestinal symptoms are prevalent in adult patients with inflammatory bowel disease (IBD), even when endoscopic remission is reached. These symptoms can have profound negative effects on the quality of life of affected patients and can be difficult to treat. They may be caused by IBD-related complications or comorbid disorders, but they can also be explained by irritable bowel syndrome (IBS)-like symptoms. AIMS To provide a practical step-by-step guide to diagnose and treat persistent gastrointestinal symptoms in patients with IBD in remission via a personalised approach. METHODS We scrutinised relevant literature on causes, diagnostics and treatment of persistent gastrointestinal symptoms (abdominal pain or discomfort, bloating, abdominal distension, diarrhoea, constipation and faecal incontinence) in patients with IBD in remission. RESULTS A graphical practical guide for several steps in diagnosing, identifying potential triggers and adequate treatment of persistent gastrointestinal symptoms in IBD in remission is provided based on supporting literature. The first part of this review focuses on the diagnostic and treatment approaches for potential IBD-related complications and comorbidities. The second part describes the approach to IBS-like symptoms in IBD in remission. CONCLUSIONS Persistent gastrointestinal symptoms in IBD in remission can be traced back to potential pathophysiological mechanisms in individual patients and can be treated adequately. For both IBD-related complications and comorbidities and IBS-like symptoms in IBD in remission, pharmacological, dietary, lifestyle or psychological treatments can be effective. A systematic and personalised approach is required to reduce the burden for patients, healthcare systems, and society.

Roberto Stabile, Francesco A. Tucci, Mathijs P. Verhagen, Carmen Embregts, Thierry P.P. van den Bosch, Rosalie Joosten, Maria J. De Herdt, Berdine van der Steen et al.

Phenotypic plasticity and inflammation, two well-established hallmarks of cancer, play key roles in local invasion and distant metastasis by enabling rapid adaptation of tumor cells to dynamic micro- environmental changes. Here, we show that in oral squamous carcinoma cell carcinoma (OSCC), the competition between the NuRD and SWI/SNF chromatin remodeling complexes plays a pivotal role in regulating both epithelial-mesenchymal plasticity (EMP) and inflammation. By perturbing these complexes, we demonstrate their opposing downstream effects on inflammatory pathways and EMP regulation. In particular, downregulation of the BRG1-specific SWI/SNF complex deregulates key inflammatory genes such as TNF-α and IL6 in opposite ways when compared with loss of CDK2AP1, a key member of the NuRD complex. We show that CDK2AP1 genetic ablation triggers a pro-inflammatory secretome encompassing several chemo- and cytokines thus promoting the recruitment of monocytes into the tumor microenvironment (TME). Furthermore, CDK2AP1 deletion stimulates their differentiation into M2-like macrophages, as also validated on tumor microarrays from OSCC patient- derived tumor samples. Further analysis of the inverse correlation between CDK2AP1 expression and TME immune infiltration revealed specific downstream effects on CD68+ macrophage abundance and localization. Our study sheds light on the role of chromatin remodeling complexes in OSCC locoregional invasion and points at the potential of CDK2AP1 and other members of the NuRD and SWI/SNF chromatin remodeling complexes as prognostic markers and therapeutic targets.

Nidret Ibrić, Chao Fu, Truls Gundersen

This paper introduces a simultaneous optimization approach to synthesizing work and heat exchange networks (WHENs). The proposed work and heat integration (WHI) superstructure enables different thermodynamic paths of pressure and temperature-changing streams. The superstructure is connected to a heat exchanger network (HEN) superstructure, enabling the heat integration of hot and cold streams identified within the WHI superstructure. A two-step solution strategy is proposed, consisting of initialization and design steps. In the first step, a thermodynamic path model based on the WHI superstructure is combined with a model for simultaneous optimization and heat integration. This nonlinear programming (NLP) model aims to minimize operating expenditures and provide an initial solution for the second optimization step. In addition, hot and cold streams are identified, enabling additional model reduction. In the second step of the proposed solution approach, a thermodynamic path model is combined with the modified HEN model to minimize the network’s total annualized cost (TAC). The proposed mixed integer nonlinear programming (MINLP) model is validated by several examples, exploring the impact of the equipment costing and annualization factor on the optimal network design. The results from these case studies clearly indicate that the new synthesis approach proposed in this paper produces solutions that are consistently similar to or better than the designs presented in the literature using other methodologies.

Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više