s: In this paper the influence of carbon dioxide pressure on supercritical extraction of Salvia officinalis L. was investigated. Supercritical fluid extraction with carbon dioxide was done for pressures of 80, 100, 150, 200 and 300 bar. It was concluded that with increasing pressure from 80 to 300 the bar extraction yield enhanced. GC/MS and GC/FID methods were used for qualitative and quantitative analyses of obtained extracts and essential oils from extracts.
Background Magnetic resonance imaging (MRI), together with histology, is widely used to diagnose and to monitor treatment in oncology. Spatial correspondence between these modalities provides information about the ability of MRI to characterize cancerous tissue. However, registration is complicated by deformations during pathological processing, and differences in scale and information content. Methodology/Principal Findings This study proposes a methodology for establishing an accurate 3D relation between histological sections and high resolution in vivo MRI tumor data. The key features of the methodology are: 1) standardized acquisition and processing, 2) use of an intermediate ex vivo MRI, 3) use of a reference cutting plane, 4) dense histological sampling, 5) elastic registration, and 6) use of complete 3D data sets. Five rat pancreatic tumors imaged by T2*-w MRI were used to evaluate the proposed methodology. The registration accuracy was assessed by root mean squared (RMS) distances between manually annotated landmark points in both modalities. After elastic registration the average RMS distance decreased from 1.4 to 0.7 mm. The intermediate ex vivo MRI and the reference cutting plane shared by all three 3D images (in vivo MRI, ex vivo MRI, and 3D histology data) were found to be crucial for the accurate co-registration between the 3D histological data set and in vivo MRI. The MR intensity in necrotic regions, as manually annotated in 3D histology, was significantly different from other histologically confirmed regions (i.e., viable and hemorrhagic). However, the viable and the hemorrhagic regions showed a large overlap in T2*-w MRI signal intensity. Conclusions The established 3D correspondence between tumor histology and in vivo MRI enables extraction of MRI characteristics for histologically confirmed regions. The proposed methodology allows the creation of a tumor database of spatially registered multi-spectral MR images and multi-stained 3D histology.
We present a prescriptive framework for the event-triggered control of nonlinear systems. Rather than closing the loop periodically, as traditionally done in digital control, in event-triggered implementations the loop is closed according to a state-dependent criterion. Event-triggered control is especially well suited for embedded systems and networked control systems since it reduces the amount of resources needed for control such as communication bandwidth. By modeling the event-triggered implementations as hybrid systems, we provide Lyapunov-based conditions to guarantee the stability of the resulting closed-loop system and explain how they can be utilized to synthesize event-triggering rules. We illustrate the generality of the approach by showing how it encompasses several existing event-triggering policies and by developing new strategies which further reduce the resources needed for control.
Event-triggered and self-triggered control have recently been proposed as implementation strategies that considerably reduce the resources required for control. Although most of the work so far has focused on closing a single control loop, some researchers have started to investigate how these new implementation strategies can be applied when closing multiple-feedback loops in the presence of physically distributed sensors and actuators. In this paper, we consider a scenario where the distributed sensors, actuators, and controllers communicate via a shared wired channel. We use our recent prescriptive framework for the event-triggered control of nonlinear systems to develop novel policies suitable for the considered distributed scenario. Afterwards, we explain how self-triggering rules can be deduced from the developed event-triggered strategies.
The present study investigated the human ability to discriminate the size of 3-D objects by touch. Experiment 1 measured the just noticeable differences (JNDs) for three tasks: (1) discrimination of volume without availability of weight information, (2) discrimination of volume with weight information available, and (3) discrimination of surface area. Stimuli consisted of spheres, cubes, and tetrahedrons. For all shapes, two reference sizes were used (3.5 and 12 cm3). No significant effect of task on the discriminability of objects was found, but the effects of shape and size were significant, as well as the interaction between these two factors. Post hoc analysis revealed that for the small reference, the Weber fractions for the tetrahedron were significantly larger than the fractions for the cube and the sphere. In Experiment 2, the JNDs for haptic perception of weight were measured for the same objects as those used in Experiment 1. The shape of objects had no significant effect on the Weber fractions for weight, but the Weber fractions for the small stimuli were larger than the fractions for the large stimuli. Surprisingly, a comparison between the two experiments showed that the Weber fractions for weight were significantly larger than the fractions for volume with availability of weight information. Taken together, the results reveal that volume and weight information are not effectively combined in discrimination tasks. This study provides detailed insight into the accuracy of the haptic system in discriminating objects’ size. This substantial set of data satisfies the need for more fundamental knowledge on haptic size perception, necessary for a greater understanding of the perception of related properties, as well as of more general perceptual processes.
We describe a new method using flow-injection analysis with spectro-photometric detection, suitable for the determination of N-acetyl-l-cysteine (NAC). The proposed method is appropriate for the determination of NAC in reaction with Pd2+ ions in the concentration range from 1.0 × 10−5 mol L−1 to 6.0 × 10−5 mol L−1. The detection limit NAC was 5.84 × 10−6 mol L−1 and the recorded relative standard deviation of the method is in the range from 1.67 to 4.11%. NAC and Pd2+ form complexes of Pd2+:NAC molar ratios of 1:1 and 1:2, depending on the ratio of their analytical concentrations. The cumulative conditional stability constant for the Pd(NAC)22+ complex is β12’ = 2.69 × 109 L2 mol−2. The proposed method was compared with the classic spectrophotometric determination of NAC, using the same reagent, PdCl2, and had shown certain advantages: a) shorter analysis time; b) the use of smaller volumes of sample and reagents, which make the proposed method cheaper and faster for NAC determination in real samples without sample pretreatment.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više