Logo
User Name

Admir Mašić

Društvene mreže:

Sabrina C. Shen, Branden Spitzer, Damian Stefaniuk, Shengfei Zhou, A. Masic, Markus J. Buehler

Sewage sludge, a biosolid product of wastewater processing, is an often-overlooked source of rich organic waste. Hydrothermal processing has shown promise in converting sewage sludge into valorized materials with potential application in biofuels, asphalt binders, and bioplastics. Here we characterize the physicochemical properties of hydrochar, the carbonaceous solid phase product of hydrothermal processing, and investigate its use as bio-based filler in additive manufacturing. We find that the presence of metallic and metalloid dopants in sewage sludge, which are not typically found in biomass wastes, yields unusual results in organic material processing such as decreased graphitic ordering after thermal activation. We further find that addition of hydrochar generally decreases mechanical performance of additive manufacturing composites, however, some properties such as toughness can be recovered with nature-inspired architecting into gyroid microstructures. These findings demonstrate that more investigation is required to optimally valorize sewage sludge and similarly disordered waste streams.

Marco Nicola, Roberto Gobetto, Alessandro Bazzacco, Chiara Anselmi, Enrico Ferraris, Alfonsina Russo, A. Masic, Antonio Sgamellotti

The possibility to use light in the visible spectrum to induce near-infrared luminescence in some materials, particularly Egyptian blue and related pigments, offers a significant advantage in terms of their detection. Since 2008, this property has been exploited to reveal the presence of those pigments even in tiny amounts on ancient and decayed surfaces, using a technical-photography method. This paper presents a new type of imaging device that enables real-time, easy, and inexpensive identification and mapping of Egyptian blue and related materials. The potential of the new tool is demonstrated by its effectiveness in detecting Egyptian blue within some prestigious sites: (a) Egyptian findings at Museo Egizio, Turin; (b) underground Roman frescoes at Domus Aurea, Rome; and (c) Renaissance frescoes by Raphael, Triumph of Galatea and Loggia of Cupid and Psyche, at Villa Farnesina, Rome. The device is based on night vision technology and allows an unprecedented fast, versatile, and user-friendly approach. It is employable by professionals including archeologists, conservators, and conservation scientists, as well as by untrained individuals such as students or tourists at museums and sites. The overall aim is not to replace existing photographic techniques but to develop a tool that enables rapid preliminary recognition, useful for planning the work to be carried out with conventional methods. The ability to immediately track Egyptian blue and related pigments, through real-time vision, photos, and videos, also provides a new kind of immersive experience (Blue Vision) and can foster the modern use of these materials in innovative applications and future technologies.

Marco Nicola, C. Garino, Sophia Mittman, E. Priola, L. Palin, M. Ghirardello, Vamshi Damagatla, Austin Nevin, A. Masic et al.

William Weiss, R. Gettu, Liberato Ferrara, Rupert Myers, Rajita Sinha, Joyce Besheer, Patrick Mulholland, Christina Gremel, P. Bruhns et al.

Nicolas Chanut, D. Stefaniuk, J. Weaver, Yunguang Zhu, Shao-Horn Yang, A. Masic, Franz-Josef Ulm

Significance The extent and pace of the transition from our current fossil fuel-based economy to one based on renewable energy will strongly depend on the availability of bulk energy storage solutions. Herein, we investigate one such candidate technology, using chemical precursors which are inexpensive, abundant, and widely available, specifically cement, water, and carbon black. The energy storage capacity of these carbon-cement supercapacitors is shown to be an intensive quantity, and their high rate capability exhibits self-similarity. These properties point to the opportunity for employing these structural concrete-like supercapacitors for bulk energy storage in both residential and industrial applications ranging from energy autarkic shelters and self-charging roads for electric vehicles, to intermittent energy storage for wind turbines.

Marco Nicola, R. Gobetto, A. Masic

The ancient Egyptian blue pigment was developed over 5000 years ago and was used extensively for around four millennia until its use mysteriously declined dramatically during the Early Middle Ages. It recently attracted a lot of attention along with some related materials, leading to a fast-growing number of applications in fields, such as sensors, solar concentrators, energy-saving, and medicine. The new surge in interest began in 1996 with the discovery of their intense NIR photoluminescence that surprisingly can be triggered even by visible light. In 2013, the possibility of exfoliating them and producing NIR luminescent nanosheets was established, expanding the family of 2D nanomaterials. More recently, the discovery of their high antibacterial effects and biocompatibility, and very promising optical, electric and magnetic properties, has further boosted their applications. The characteristics of Egyptian blue are due to its main component: the very stable crystalline compound CaCuSi_4O_10. This tetragonal sheet silicate is the synthetic analogous of the rare cuprorivaite mineral. In Part A of this review, we summarize the historical uses and main properties (i.e., composition, structure, color, stability, luminescence, and biological activity) of cuprorivaite and related 2D silicates, i.e., BaCuSi_4O_10 (the main constituent of the ancient pigment Chinese Blue), BaCuSi_2O_6 (the main constituent of the ancient pigment Chinese Purple), SrCuSi_4O_10 (synthetic analogous of wesselsite) and BaFeSi_4O_10 (synthetic analogous of gillespite). The Part B of the review will focus on the modern rediscovery of these materials, their modern synthesis and exfoliation, and the innovative applications based on their properties.

D. Stefaniuk, Marcin Hajduczek, J. Weaver, F. Ulm, A. Masic

Abstract Addressing the existing gap between currently available mitigation strategies for greenhouse gas emissions associated with ordinary Portland cement production and the 2050 carbon neutrality goal represents a significant challenge. In order to bridge this gap, one potential option is the direct gaseous sequestration and storage of anthropogenic CO2 in concrete through forced carbonate mineralization in both the cementing minerals and their aggregates. To better clarify the potential strategic benefits of these processes, here, we apply an integrated correlative time- and space-resolved Raman microscopy and indentation approach to investigate the underlying mechanisms and chemomechanics of cement carbonation over time scales ranging from the first few hours to several days using bicarbonate-substituted alite as a model system. In these reactions, the carbonation of transient disordered calcium hydroxide particles at the hydration site leads to the formation of a series of calcium carbonate polymorphs including disordered calcium carbonate, ikaite, vaterite, and calcite, which serve as nucleation sites for the formation of a calcium carbonate/calcium-silicate-hydrate (C-S-H) composite, and the subsequent acceleration of the curing process. The results from these studies reveal that in contrast to late-stage cement carbonation processes, these early stage (precure) out-of-equilibrium carbonation reactions do not compromise the material's structural integrity, while allowing significant quantities of CO2 (up to 15 w%) to be incorporated into the cementing matrix. The out-of-equilibrium carbonation of hydrating clinker thus provides an avenue for reducing the environmental footprint of cementitious materials via the uptake and long-term storage of anthropogenic CO2.

Jennie A M R Kunitake, D. Sudilovsky, Lynn M Johnson, Hyun-Chae Loh, Siyoung Choi, P. Morris, M. Jochelson, N. Iyengar, M. Morrow et al.

Microcalcifications, primarily biogenic apatite, occur in cancerous and benign breast pathologies and are key mammographic indicators. Outside the clinic, numerous microcalcification compositional metrics (e.g., carbonate and metal content) are linked to malignancy, yet microcalcification formation is dependent on microenvironmental conditions, which are notoriously heterogeneous in breast cancer. We interrogate multiscale heterogeneity in 93 calcifications from 21 breast cancer patients using an omics-inspired approach: For each microcalcification, we define a “biomineralogical signature” combining metrics derived from Raman microscopy and energy-dispersive spectroscopy. We observe that (i) calcifications cluster into physiologically relevant groups reflecting tissue type and local malignancy; (ii) carbonate content exhibits substantial intratumor heterogeneity; (iii) trace metals including zinc, iron, and aluminum are enhanced in malignant-localized calcifications; and (iv) the lipid-to-protein ratio within calcifications is lower in patients with poor composite outcome, suggesting that there is potential clinical value in expanding research on calcification diagnostic metrics to include “mineral-entrapped” organic matrix.

Linda M Seymour, Janille M. Maragh, Paolo Sabatini, Michel Di Tommaso, J. Weaver, A. Masic

Ancient Roman concretes have survived millennia, but mechanistic insights into their durability remain an enigma. Here, we use a multiscale correlative elemental and chemical mapping approach to investigating relict lime clasts, a ubiquitous and conspicuous mineral component associated with ancient Roman mortars. Together, these analyses provide new insights into mortar preparation methodologies and provide evidence that the Romans employed hot mixing, using quicklime in conjunction with, or instead of, slaked lime, to create an environment where high surface area aggregate-scale lime clasts are retained within the mortar matrix. Inspired by these findings, we propose that these macroscopic inclusions might serve as critical sources of reactive calcium for long-term pore and crack-filling or post-pozzolanic reactivity within the cementitious constructs. The subsequent development and testing of modern lime clast–containing cementitious mixtures demonstrate their self-healing potential, thus paving the way for the development of more durable, resilient, and sustainable concrete formulations.

...
...
...

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više