Accurate prediction of traffic information is important in many applications in relation to Intelligent Transport systems (ITS), since it reduces the uncertainty of future traffic states and improves traffic mobility. There is a lot of research done in the field of traffic information predictions such as speed, flow and travel time. The most important research was done in the domain of cooperative intelligent transport system (C-ITS). The goal of this paper is to introduce the novel cooperation behaviour profile prediction through the example of flexible Road Trains useful road cooperation parameter, which contributes to the improvement of traffic mobility in Intelligent Transportation Systems. This paper presents an approach towards the control and cooperation behaviour modelling of vehicles in the flexible Road Train based on hybrid automaton and neuro-fuzzy (ANFIS) prediction of cooperation profile of the flexible Road Train. Hybrid automaton takes into account complex dynamics of each vehicle as well as discrete cooperation approach. The ANFIS is a particular class of the ANN family with attractive estimation and learning potentials. In order to provide statistical analysis, RMSE (root mean square error), coefficient of determination (R2) and Pearson coefficient (r), were utilized. The study results suggest that ANFIS would be an efficient soft computing methodology, which could offer precise predictions of cooperative interactions between vehicles in Road Train, which is useful for prediction mobility in Intelligent Transport systems.
Regular and systematic public transport is of great importance to all residents in any country, in the city and on commuter routes. In our environment, users of public transport can track the movement of vehicles with great difficulty, given that the current system does not meet the necessary criteria, and does not comply with the functioning of transport system. The aim of the final paper is to show the development of such a system using ZigBee and Arduino platforms. This paper shows an example of use the technologies mentioned above, their main advantages and disadvantages, with the emphasis on communication between the device and its smooth progress. In order to show the way in which the system could function, a simple mesh network was created, consisting of coordinator, routers for data distribution and end devices representing the vehicles. To view the results a web application was developed using open-source tool which is for display of the collected data on the movement of nodes in the network.
Roundabout intersections promote a continuous flow of traffic. Roundabouts entry move traffic through an intersection more quickly, and with less congestion on approaching roads. With the introduction of smart vehicles and cooperative decision-making, roundabout management shortens the waiting time and leads to a more efficient traffic without breaking the traffic laws and earning penalties. This paper proposes a novel approach of cooperative behavior strategy in conflict situations between the autonomous vehicles in roundabout using game theory. The game theory presents a strategic decision-making technique between independent agents - players. Each individual player tends to achieve best payoff, by analyzing possible actions of other players and their influence on game outcome. The Prisoner's Dilemma game strategy is selected as approach to autonomous vehicle-to-vehicle (V2V) decision making at roundabout test-bed, because the commonly known traffic laws dictate certain rules of vehicle's behavior at roundabout. It is shown that, by integrating non-zero-sum game theory in autonomous vehicle-to-vehicle (V2V) decision making capabilities, the roundabout entry problem can be solved efficiently with shortened waiting times for individual autonomous vehicles.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više