SUMMARY Based on morphological and genetic characteristics, we describe a new species of Hepatozoon in the European wild cat (Felis silvestris silvestris), herein named Hepatozoon silvestris sp. nov. The study also provides the first data on the occurrence of H. felis in this wild felid. Hepatozoon meronts were observed in multiple cross-sections of different organs of four (44%) cats. Additionally, extracellular forms, resembling mature gamonts of Hepatozoon, were found in the spleen and myocardium of two cats. Furthermore, tissues of six animals (67%) were positive by PCR. Hepatozoon felis was identified infecting one cat (11%), whereas the 18S rRNA sequences of the remaining five cats (56%) were identical, but distinct from the sequences of H. felis. Phylogenetic analyses revealed that those sequences form a highly supported clade distant from other Hepatozoon spp. Future studies should include domestic cats from the areas where the wild cats positive for H. silvestris sp. nov. were found, in order to investigate their potential role to serve as intermediate hosts of this newly described species. Identification of its definitive host(s) and experimental transmission studies are required for elucidating the full life cycle of this parasite and the possible alternative routes of its transmission.
Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) dominate many of the European forest stands. Also, mixtures of European beech and Scots pine more or less occur over all European countries, but have been scarcely investigated. The area occupied by each species is of high relevance, especially for growth evaluation and comparison of different species in mixed and monospecific stands. Thus, we studied different methods to describe species proportions and their definition as proportion by area. 25 triplets consisting of mixed and monospecific stands were established across Europe ranging from Lithuania to Spain in northern to southern direction and from Bulgaria to Belgium in eastern to western direction. On stand level, the conclusive method for estimating the species proportion as a fraction of the stand area relates the observed density (tree number or basal area) to its potential. This stand-level estimation makes use of the potential from comparable neighboring monospecific stands or from maximum density lines derived from other data, e.g. forest inventories or permanent observations plots. At tree level, the fraction of the stand area occupied by a species can be derived from the proportions of their crown projection area or of their leaf area. The estimates of the potentials obtained from neighboring monospecific stands, especially in older stands, were poorer than those from the maximum density line depending on the Martonne aridity index. Therefore, the stand-level method in combination with the Martonne aridity index for potential densities can be highly recommended. The species’ proportions estimated with this method are best approximated by the proportions of the species’ leaf areas. In forest practice, the most commonly applied method is an ocular estimation of the proportions by crown projection area. Even though the proportions of pine were calculated here by measuring crown projection areas in the field, we found this method to underestimate the proportion by 25% compared to the stand-level approach.
Predictable network performance is key in many low-power wireless sensor network applications. In this paper, we use machine learning as an effective technique for realtime characterization of the communication performance as observed by the MAC layer. Our approach is data-driven and consists of three steps: extensive experiments for data collection, offline modeling and trace-driven performance evaluation. From our experiments and analysis, we find that a neural networks prediction model shows best performance.
To enhance system performance of future heterogeneous wireless networks the co-design of PHY, MAC, and higher layer protocols is inevitable. In this work, we present WiSCoP - a novel embedded platform for experimentation, prototyping and implementation of integrated cross-layer network design approaches. WiSCoP is built on top of a Zynq hardware platform integrated with FMCOMMS1/2/4 RF front-ends. We demonstrate the flexibility of WiSCoP by using it to prototype a fully standard compliant IEEE 802.15.4 stack with real-time performance and cross-layer integration.
We introduce a new edge centrality measure - relative edge betweenness γ ( u v ) = b ( u v ) / √ ( c ( u ) c ( v )) , where b ( u v ) is the standard edge betweenness and c ( u ) is the adjusted vertex betweenness. In this alternative definition, the importance of an edge is normalized with respect to the importance of its end-vertices. This gives a better presentation of the “local” importance of an edge, i.e. its importance in the near neighborhood. We present sharp upper and lower bounds on this invariant together with the characterization of graphs attaining these bounds. In addition, we discuss the bounds for various interesting graph families, and state several open problems.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više