This work presents a grinding process of monoammonium phosphate (MAP) as an active component in a powder fire extinguisher (PFE). The aim was to determine the grinding time for reaching the optimal particle size of MAP necessary for permanent fire extinguishing. MAP grinding was performed by using a laboratory ceramic ball mill and a vibrating cup mill. The grinding process was controlled by sieving using a 100 ?m sieve at precisely defined time intervals. The efficiency of a PFE depends on the share of the -100 ?m fraction of the active component, which has to exceed 60 %. The optimal grain size with 64 % of fraction of particle size -100 ?m was obtained after 33 min of grinding of ?3000 ?m mm grain size MAP by using a ball mill (single-stage grinding). In two-stage process, by grinding the same initial MAP sample (?3000 ?m) in the vibro mill for 10 min, powder with the upper limit grain size of 300 ?m and the mean grain diameter of 120 ?m was obtained. This sample with a reduced size was further ground in the ceramic ball mill yielding 67.5 % of the fraction of particle size -100 ?m after 19 min. The total time of the two-stage grinding process was 29 min. By analyzing the grinding time of MAP required to get the lowest required share of the fraction of particle size -100 ?m that provides the effectiveness of formed PFE it can be concluded that 64 % of this fraction was obtained after 33 min of single-stage grinding, while only after 26 min in the two-stage process. Thus, the grinding time was reduced by 7 min indicating certain energy savings. Stability and hydrophobicity of the obtained PFE were achieved by coating with magnesium stearate (MgSt) at the content of 2 % in a ball mill for 15 min. The coating was confirmed by the standardized procedure for verification of PFE hydrophobic properties in contact with water drops. To obtained PFE had component mass ratios of MAP:AS:CC:QS:MgSt=55:20:18:5:2 (AS-ammonium sulfate; CC-calcium carbonate, QS-quartz sand) and was further characterized by chemical and granulometric analyses. The fire extinguishing efficiency of the PFE was tested in controlled conditions, whereby fires were initiated by burning solid materials and flammable liquids. In both cases, immediate elimination of flames was achieved, thus proving the efficiency of the PFE obtained in this work for practical applications.
Transformation processes in Bosnia and Herzegovina (BiH) are characterized by continuous social conflicts between the working class and the ruling class of (ethno-)political and economic elites who have appropriated once socially owned enterprises through the nationalization processes, to be partially sold out through the privatization and bankruptcy procedures. The results of these processes, combined with the war atrocities and the break-up of the Socialist Federative Republic of Yugoslavia, have brought about the fragmentation, disempowerment and pauperization of the working class. Workers' strife during and after the privatization and transformation processes shows the still present combativeness of the working class. This paper covers three cases of workers' struggles, as examples of social conflicts in labour relations within transformation processes in BiH. Cases taken from different periods within the three-decades of post-socialist transformation of BiH, show the similarities and differences in mechanisms used by the workers of the taken examples of Rudi Čajavec, Dita and Elektroprivreda BiH mines, during the organizing of workers' strives for realization of workers' interests. The key difference between the first and the two latter cases is in the contribution of the social media networks for popularizing the wider public support to the workers' demands.
In this study, a mixture of magnesium oxide and titanium dioxide was mechanically activated in order to investigate the possibility of mechanochemical synthesis of magnesium titanate. Mechanical activation was performed for 1000 min in a high-energy vibro mill (type MH954/3, KHD Humboldt Wedag AG, Germany). The mill is equipped with housing having a horizontally placed shutter. The cylindrical stainless steel working vessel, with inner dimensions of 40 mm in height and 170 mm in diameter, has working elements consisting of two free concentric stainless steel rings with a total weight of 3 kg. The engine power is 0.8 kW. Respecting the optimal amount of powder to be activated of 50-150 g and the stoichiometric ratio of the reactants in the equation presenting the chemical reaction of magnesium titanate synthesis, the starting amounts were 20.2 g (0.5 mol) of MgO and 39.9 g (0.5 mol) TiO2. During the experiments, X-ray diffraction analysis of the samples taken from the reaction system after 60, 180, 330, and 1000 min of mechanical activation was performed. Atomic absorption spectrophotometry was used for chemical composition analysis of samples taken at different activation times. Based on the X-ray diffraction analysis results, it can be concluded that the greatest changes in the system took place at the very beginning of the mechanical activation due to the disturbance of the crystal structure of the initial components. X-ray diffraction analysis of the sample after 1000 min of activation showed complete amorphization of the mixture, but diffraction maxima characteristic for magnesium titanate were not identified. Therefore, the mechanical activation experiments were stopped. Evidently, the energy input was not sufficient to overcome the energy barrier to form a new chemical compound - magnesium titanate. The failure to synthesize magnesium titanate is explained by the low negative Gibbs energy value of -25.8 kJ/mol (despite the theoretical possibility that the reaction will happen), as well as by the amount of mechanical energy entered into the system during activation which was insufficient to obtain the reaction product. Although the synthesis of MgTiO3 was not achieved, significant results were obtained which identify models for further investigations of the possibility of mechanochemical reactions of alkaline earth metals and titanium dioxide.
The main purpose of this study is to investigate the effects of e-CRM tactics on customer loyalty in B2C markets. In addition, this study attempts to explore the mediating roles of customer service quality and perceived value in the e-CRM – customer loyalty relationship. Moreover, the current research explores the relative importance of individual e-marketing tactics (personalization, reward program, online community, and customer service quality) is a customer loyalty model. A conceptual model is empirically tested in the context of the bank industry, using a sample of 203 bank users. The results indicate that e-CRM has a positive indirect effect on customer loyalty via customer service quality. The findings suggest that online services, personalization, and ease of website navigation are the most important factors in influencing customer loyalty. The present study enhances our understanding of the importance of individual e-CRM tactics in influencing customer loyalty and thereby provides valuable insights for marketing managers in service sectors, particularly the banking sector.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više