Logo

Publikacije (45396)

Nazad
Valentina Karin-Kujundzic, Adriana Covarrubias-Pinto, A. Škrtić, S. Vranić, L. Serman

The Hedgehog (Hh) signaling pathway is essential for normal embryonic development, while its hyperactivation in the adult organism is associated with the development of various cancers. The role of the Hh signaling pathway in ovarian cancer has not been sufficiently investigated. Therefore, the present study investigated the role of protein patched homolog 1 (PTCH1), a component of the Hh signaling pathway, and changes in the promoter methylation status of the corresponding gene in a cohort of low-(LGSC) and high-grade serous ovarian carcinomas (HGSC) and HGSC cell lines (OVCAR8 and OVSAHO). PTCH1 protein expression level was analyzed using immunohistochemistry in tissue samples and immunofluorescence and western blotting in cell lines. DNA methylation patterns of the PTCH1 gene were analyzed using methylation-specific PCR. PTCH1 protein expression was significantly higher in HGSCs and LGSCs compared with controls (healthy ovaries and fallopian tubes). Similarly, ovarian cancer cell lines exhibited significantly higher PTCH1 protein expression compared with a normal fallopian tube non-ciliated epithelial cell line (FNE1). PTCH1 protein fragments of different molecular weights were detected in all cell lines, indicating possible proteolytic cleavage of this protein, resulting in the generation of soluble N-terminal fragments that are translocated to the nucleus. DNA methylation of the PTCH1 gene promoter was exclusively detected in a proportion of HGSC (13.5%) but did not correlate with protein expression. PTCH1 protein was highly expressed in serous ovarian carcinoma tissues and cell lines, while PTCH1 promoter methylation was only detected in HGSC. Further investigation is required to elucidate the possible mechanisms of PTCH1 activation in serous ovarian carcinomas.

Efforts to reduce air pollution in developing countries may require increased use of biomass fuels. Even biomass fuels are a sustainable alternative to fossil fuels there is limited quantitative information concerning heavy metal content in their ashes. Therefore, this study focuses on the determination of the heavy metal concentrations in wood pellet ash obtained from the combustion of 10 pellet brans from Bosnia and Herzegovina and Italy, the effects of adding the ashes to soils, and the assessment of health risk assessment. Ash content was determined by gravimetric method. The amount and composition of ash remaining after combustion of wood pellets varies considerably according to the type of biomass and wood from which the pellet is made. Samples were prepared by wet digestion using HNO3, and heavy metals are determined by atomic absorption spectroscopy-flame and graphite furnace. The results showed that the lowest concentration in ashes was obtained for Co 0.01 mg kg−1 and the highest for Fe 571.63 mg kg−1. The Hazard Index (HI), calculated for non-cancerous substances for children was 2.23E−01, and the total Risk index was 4.54E−05. As for adults, HI was 1.51E−02, while the Risk index value was 3.21E−06. Human health risk calculated through HI and Risk index for children and adults associated with analyzed pellets is not of significant concern. The calculated enrichment factor and metal pollution index for wood pellet ashes indicate the risk of soil contamination with heavy metals. From this point of view, analyzed samples of ashes could be a serious contaminant of soil, so further monitoring is required.

I. Marijanović, Marija Kraljević, Teo Buhovac, E. Sokolović

Background The pandemic of Coronavirus infectious disease 2019 (COVID-19) poses a major public health challenge, and an effective vaccine is the potential mechanism to resolve this specific situation. The present study aimed to evaluate acceptance of COVID-19 vaccination among patients attending the Oncology Clinic of University Clinical Hospital Mostar. Material/Methods This cross-sectional observational study enrolled 364 patients with cancer from the Oncology Clinic of University Clinical Hospital Mostar during February 2021. Data were collected using a questionnaire that captured general information about the participants and their attitudes toward COVID-19 vaccination. Results Of the participants, 41.8% answered “Yes” when asked if they would take the vaccine once it becomes available, 37.6% answered “Not sure”, and 20.6% answered “No”. For patients in favor of vaccination, the main reasons reported were fear of getting sick (77.6%), the desire to contribute to herd immunity (57.8%), and trusting the recommendations of health professionals (57.2%). The main reasons for the patients’ vaccination refusal/indecision were doubts about the results from clinical trials of COVID-19 vaccines (49.1%), concerns about adverse effects (24.5%), and confusion about the various vaccine options (19.8%). The majority of participants (82.4%) stated that recommendation by their oncologist could influence their decision about vaccination. Of the participants who indicated unwillingness (refusal or indecision) to be vaccinated against COVID-19, 65.3% stated that recommendation by their oncologist could influence their decision about vaccination. Conclusions The findings from the present study showed most patients had refused or were indecisive regarding immunization with COVID-19 vaccine. Increasing physician awareness of this situation may result in higher rates of vaccination.

Irma Avdic, Emily M Kempfer-Robertson, Lee M. Thompson

Azoheteroarenes are relatively new photoswitchable compounds, where one of the phenyl rings of an azobenzene molecule is replaced by a heteroaromatic five-membered ring. Recent findings on methylated azoheteroarenes show that these photoswitches have potential in various optically addressable applications. The thermal stability of molecular switches is one of the primary factors considered in the design process. For molecular memory or energy storage devices, long thermal relaxation times are required. However, inducing a short thermal isomerization lifetime is required to release stored energy or as an alternative to photoswitching to avoid overlapping absorption spectra that reduce switching fidelity. In this study, we investigate how oriented external electric fields can be used to tune the thermal isomerization properties of three unsubstituted heteroaryl azo compounds-azoimidazole, azopyrazole, and azopyrrole. We show that favorable electric field orientations can increase the thermal half-life of studied molecules by as much as 60 times or reduce it from tens of days to seconds, compared to their half-life values in the field-free environment. A deeper understanding of the relationship between structure and kinetic properties provides insight as to how molecular switches can be designed for their electric field response in switching applications.

B. Leander, Aida Čaušević, Tomas Lindström, H. Hansson

Industrial systems have traditionally been kept isolated from external networks. However, business benefits are pushing for a convergence between the industrial systems and new information technology environments such as cloud computing, as well as higher level of connectivity between different systems. This makes cybersecurity a growing concern for industrial systems. In strengthening security, access control is a fundamental mechanisms for providing security in these systems. However, access control is relatively immature in traditional industrial systems, as compared to modern IT systems, and organizations' adherence to an established cybersecurity standard or guideline can be a deciding factor for choices of access control techniques used. This paper presents the results of a questionnaire study on the usage of access control within industrial system that are being developed, serviced or operated by Swedish organizations, contrasted to their usage of cybersecurity standards and guidelines. To be precise, the article focuses on two fundamental requirements of cybersecurity: identification and authentication control, and presents related findings based on a survey of the Swedish industry. The goal of the study is breaching the gap between the current state and the requirements of emerging systems with regards to access control.

A. Vallejo-Vaz, C. Stevens, A. Lyons, Kanika I Dharmayat, T. Freiberger, G. Hovingh, P. Mata, F. Raal et al.

Adha Hrusto, P. Runeson, Emelie Engström

DevOps represent the tight connection between development and operations. To address challenges that arise on the borderline between development and operations, we conducted a study in collaboration with a Swedish company responsible for ticket management and sales in public transportation. The aim of our study was to explore and describe the existing DevOps environment, as well as to identify how the feedback from operations can be improved, specifically with respect to the alerts sent from system operations. Our study complies with the basic principles of the design science paradigm, such as understanding and improving design solutions in the specific areas of practice. Our diagnosis, based on qualitative data collected through interviews and observations, shows that alert flooding is a challenge in the feedback loop, i.e. too much signals from operations create noise in the feedback loop. Therefore, we design a solution to improve the alert management by optimizing when to raise alerts and accordingly introducing a new element in the feedback loop, a smart filter. Moreover, we implemented a prototype of the proposed solution design and showed that a tighter relation between operations and development can be achieved, using a hybrid method which combines rule-based and unsupervised machine learning for operations data analysis.

Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više