This retrospective cohort study aimed to analyze the clinical manifestations, complications, and maternal-fetal outcomes in patients affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during delivery. The cohort included 61 pregnant women positive for SARS-CoV-2 infection at the time of delivery. Patients were divided into two groups: symptomatic and asymptomatic. We found a significantly higher rate of leukocytosis (p < 0.00078) and lymphopenia (p < 0.0024) in symptomatic women compared with asymptomatic ones. Other laboratory parameters, such as CRP (p = 0.002), AST (p = 0.007), LDH (p = 0.0142), ferritin (p = 0.0036), and D-dimer (p = 0.00124), were also significantly more often increased in the group of symptomatic pregnant women. Overall, symptomatic pregnant women with SARS-CoV-2 infection at the delivery show more often altered laboratory parameters compared with asymptomatic ones; nevertheless, they have a slightly higher but non-significant rate of preterm delivery, cesarean section, as well as lower neonatal birth weight and Apgar score, compared with asymptomatic women.
Blind signal recognition (BSR) is a significant research topic in the field of intelligent signal processing. However, existing BSR of space-time block codes (STBC) mainly depends on conventional algorithms, which require priori information and can only identify a relatively limited amount of STBC. Although deep learning (DL) has been widely used in signal recognition, so far there are few studies on BSR of STBC in multiple-input multiple-output (MIMO) systems using DL. In this paper, a blind recognition approach for STBC based on multichannel convolutional neural network (MCNN) is proposed. By leveraging the structure of multiple input channel, the in-phase and quadrature (IQ) channel information of STBC signals can be comprehensively extracted. Simulation results demonstrate that the proposed algorithm extends the recognizable STBC codes to 6, and can also improve the recognition accuracy in comparison to traditional convolutional neural network (CNN). The model proposed in this paper has been validated with two datasets and experimentally proved to be well generalized.
Gastrointestinal nematode (GIN) infections remain one of the most prevalent and important issue affecting ruminants worldwide. Until date, the majority of GIN control has relied on the administra-tion of chemical anthelmintic medications on a regular basis, in recent years, the problem of anthel-mintic resistance has reached new heights where it can no longer be ignored as a major issue in the control of parasites of livestock. Anthelmintics are generally used at farmers' discretion, with no restrictions to access to commercially available drugs and without any assistance from veterinarians. Thus, inadequate use of anthelmintics is not rare, animals are often treated excessively, interfering with production, accelerating selection of resistant parasites, and posing significant problems for the ruminant industry. The unusually high frequency of multi-drug resistance (MDR) in sheep and goat nematodes threatens the sustainability of small-ruminant enterprises in several parts of the world. Although resistance in horses and cattle nematodes has not yet reached the levels reported in small ruminants, data shows that resistance issues, particularly MDR worms, are rising in these hosts. Both innovative non-chemical parasite control methods and molecular tests capable of detecting resistant worms are urgently needed. Keywords: Anthelmintics; Multidrug resistance; Gastrointestinal nematodes; Ruminants; Preva-lence
Abstract Objectives: This study evaluates the effect of post-activation potentiation (PAP) after 5x5s maximal voluntary isometric contractions (activation stimulus, AS) on tensiomyography (TMG) and torque twitch contractile parameters of vastus lateralis (VL) and medialis (VM), respectively. Further, we validated the decomposition of TMG response to separate responses of three fiber types. Methods: 15 healthy individuals participated in this study (40% women; age 19±2.3 years). A decomposition of VL TMG response was done after optimal fitting of three exponential curves. Results: We found main effects in contraction time (Tc) for muscle, method and time. Furthermore, we found interactions between muscle*method, method*time and muscle*method*time. Compared to PRE AS, we found shorter TMG Tc in VL and VM during the first two minutes after AS. Torque Tc remained unchanged in VL, while it increased in VM within 30 seconds after AS. A decomposition of VL TMG response confirmed PAP effects being present only in decomposed type IIb muscle fibers. Conclusion: The TMG is a sensitive method to detect PAP effects with a sensor mounted directly above the muscle belly. After the decomposition of the TMG signal to three separate muscle fiber phenotypes, we provided a non-invasive insight in the contribution of each muscle fiber phenotype to the PAP of the whole muscle.
Background: Carbohydrates are mainly substrates for energy metabolism and can affect satiety, blood glucose levels, insulin secretion, and fat metabolism. Their amount and type in the diet affect metabolic responses. High-carbohydrate diets, particularly high sugar consumption, are considered particularly harmful because of their specific characteristics related to postprandial metabolism, effects on hunger and satiety, and thus on caloric intake and energy balance. The European Food Safety Authority has suggested that the reference intake for carbohydrates should be between 45 and 60% of total energy requirements and less than 10% should be added sugars, especially for children. Objective: Investigate the proportion and type of carbohydrates in the diets of children in early adolescence in two territorially distinct areas, the continental and the Mediterranean. Methods: The study was conducted as part of a longitudinal cohort study. The survey was conducted in elementary schools in two regions: continental and Mediterranean. The School Physical Activity and Nutrition Survey was used for research purposes. Descriptive and inferential statistical tests were applied for data analysis. Results: A total of 1,411 respondents of both sexes aged 12-15 years, 729 boys and 678 girls, participated in the study. The intake of carbohydrates in the total sample is represented in the daily intake of 59%. The proportion of natural sugar in the diet of boys is statistically significantly higher in the continental compared to the Mediterranean region at the age of 12-13 years (p = 0.002), 13-14 years (p = 0.049), and 14-15 years (p = 0.002). Added sugars in total carbohydrate intake are statistically significantly higher in girls in the Mediterranean region compared to the continental region at ages 12-13 years (p = 0.048), 13-14 years (p = 0.001), and 14-15 years (p = 0.001). Conclusion: The high intake of added sugars in children in the Mediterranean region is of concern, although the intake in the continental area is well above current recommendations. Therefore, one of the public health goals is to promote proper nutrition as well as the availability of healthy foods in schools, especially during early adolescence when proper eating habits are adopted.
There are still not enough findings to elucidate how exactly alcohol use impairs cognitive abilities. Some studies have shown that there is a link between alcohol intake and vitamin D levels, but these findings are inconsistent so further research is needed. The aim of this study was to investigate the association between serum vitamin D levels and cognitive impairment in alcohol-dependent individuals. A case-control study was carried out including a total of N = 132 respondents with a medical history of alcoholism, and healthy volunteers. The Montreal Cognitive Assessment (MoCa) and Addenbrooke’s Cognitive Examination-Revised (ACE-R) screening tools were used for cognitive status assessment and serum vitamin D levels analysis (blood samples of respondents). Significant difference (p = 0.022), was found in vitamin D levels in the alcohol-dependent group with cognitive deficiency 13.7 ± 9.4 (ng/mL), alcohol-dependent group without cognitive deficiency 19.5 ± 11.2 (ng/mL) and healthy controls 19.9 ± 11.1 (ng/mL), respectively. Furthermore, vitamin D levels were significantly different across all groups based on MoCa (p = 0.016) and ACE-R (p = 0.004) scores. All three groups exhibited vitamin D deficiency. A significant correlation was found between vitamin D deficiency and cognitive impairment, but it yielded no significant difference in alcohol-dependent individuals.
Chronic obstructive pulmonary disease (COPD) is considered as the strongest independent risk factor for lung cancer (LC) development, suggesting an overlapping genetic background in both diseases. A common feature of both diseases is aberrant immunity in respiratory epithelia that is mainly regulated by Toll-like receptors (TLRs), key regulators of innate immunity. The function of the flagellin-sensing TLR5 in airway epithelia and pathophysiology of COPD and LC has remained elusive. We performed case–control genetic association and functional studies on the importance of TLR5 in COPD and LC development, comparing Caucasian COPD/LC patients (n = 974) and healthy donors (n = 1283). Association analysis of three single nucleotide polymorphisms (SNPs) (rs725084, rs2072493_N592S, and rs5744174_F616L) indicated the minor allele of rs2072493_N592S to be associated with increased risk for COPD (OR = 4.41, p < 0.0001) and NSCLC (OR = 5.17, p < 0.0001) development and non-small cell LC risk in the presence of COPD (OR = 1.75, p = 0.0031). The presence of minor alleles (rs5744174 and rs725084) in a co-dominant model was associated with overall survival in squamous cell LC patients. Functional analysis indicated that overexpression of the rs2072493_N592S allele affected the activation of NF-κB and AP-1, which could be attributed to impaired phosphorylation of p38 and ERK. Overexpression of TLR5N592S was associated with increased chemosensitivity in the H1299 cell line. Finally, genome-wide transcriptomic analysis on WI-38 and H1299 cells overexpressing TLR5WT or TLR5N592S, respectively, indicated the existence of different transcription profiles affecting several cellular pathways potentially associated with a dysregulated immune response. Our results suggest that TLR5 could be recognized as a potential biomarker for COPD and LC development with functional relevance.
High-voltage direct current (HVDC) circuit breaker development and deployment strongly depend on the testing process, which ensures that the HVDC circuit breakers will satisfy design requirements. This article presents an HVDC circuit breaker test bench circuit configuration that can provide controllable large output currents to simulate different fault conditions for the current breaking test and high output voltage for the dielectric withstand test. The current breaking test circuit is based on multiple cascaded power converters connected in parallel to provide the necessary output current capability. Each cascaded power converter is composed of multiple cells that are operated by a phase-shifted pulsewidth-modulated signal for greater controllability and higher quality of the output waveform. The dielectric withstand test circuit is a simple high-voltage source with a low power rating that can also be used to charge the test bench and the internal circuitry of the circuit breaker that is to be tested. The proposed test bench ensures that fault conditions can be replicated accurately and offers greater flexibility by being able to test mechanical, semiconductor-based, or hybrid HVDC circuit breakers with different current and voltage ratings on the same hardware without any changes. The idea and the operating principle of the proposed test bench are verified experimentally on a downscaled system that consists of three cascaded power converters connected in parallel with three cells per cascaded power converter and with a total equivalent switching frequency of 92.5 kHz.
Objective. To identify the type of the non-invasive ventilatory treatment for patients diagnosed with chronic obstructive pulmonary disease (COPD), with respiratory status deteriorated by COVID-19 pneumonia, and in need of treatment in the Intensive Care Unit (ICU). Materials and Methods. This cross-sectional study was conducted over a one-year period in the medical intensive care units of two hospitals. As the patients’ clinical condition deteriorated and the parameters of the arterial blood gas (ABG) analysis worsened, oxygen support was applied via a high flow nasal cannula (HFNC) or by non-invasive positive pressure ventilation (NPPV). According to the control values of the arterial oxygen saturation (SaO2) and the parameters of ABG, the patients were enabled to be transferred between the two types of non-invasive ventilatory support. The primary outcome was the length of hospital stay, while secondary outcomes were the rate of intubation, the mortality rate, and respiratory support-free days. Results. Out of 21 critical patients with COPD and COVID-19, 11 (52.4%) were initially treated with NPPV and 10 (47.6%) with HFNC. The ages (67±9.79 in NPPV group vs. 70.10±10.25 in HFNC group) and severity of illness (SOFA score 5 (3.5) in NPPV group vs. 5 (2.8) in HFNC group) were similar between the two groups. Switching the mode of respiratory support was more common in NPPV (58.3% in survivor group vs. 41.7% in non-survivor group). Patients treated with NPPV compared to HFNC had a nominally longer length of stay (15 (11) vs. 11.5 (4.25)), and higher risk of intubation (66.7% vs. 33.3%) and mortality (66.7% vs. 33.3%), but the comparisons did not reach statistical significance. Survivors had significantly longer Medical Intensive Care Unit and hospital stays, but significantly lower FiO2 (0.60 vs.1) and higher values of PaO2/FiO2 (78(32.4) vs. 56.3(17.8)) than non-survivors. All patients were treated with corticosteroids, and the duration of treatment was similar between groups. Conclusion. In critically ill patients with COPD and COVID-19, both HFNC and NPPV were commonly used as the initial mode of ventilation. Switching to a different mode and adverse patient outcomes were more frequent in patients initially treated with NPPV. Survivors had higher values of PaO2/FiO2 than non-survivors.
The integration of renewable generation in electrical power systems is exponentially increasing for multiple reasons. First, a fast decarbonization of the electrical energy system is a critical milestone to slow climate change and facilitate the decarbonization of other energy sectors, such as transportation and heat. Second, renewable generation from wind and solar have become much cheaper compared to conventional sources like gas, coal, and nuclear. Third, renewable generation is in many cases decentralized, which increases the resilience of the energy system, for example, in the face of natural disasters.
Reliable power system operation with 100% inverter-based resources (IBRs) is an unsolved and challenging problem. One of the most challenging factors is ensuring power system stability after N-1 contingencies. This paper presents a promising solution using an operator support system (OSS) to enable stable operation of power system with up to 100% IBR generation. The OSS consists of two components. First is dynamic security assessment to evaluate the system resiliency, and identify critical N-1 contingencies that could endanger the system. The second component, as the key technology behind the OSS, is dynamic security optimization (DSO). The DSO optimizes the control parameters of generators and inverters to improve the stability of the system towards the identified N-1 contingencies. The key to system with 100% IBRs, as emphasized in many recent studies, is to establish the grid frequency reference using grid-forming (GFM) inverters. We show through high-fidelity Electro-Magnetic-Transient (EMT) simulations of the future generation models of Hawai‘i Island system with 100% IBR capacity that a system with 100% IBRs can be operated stably with the help of GFM inverters, and appropriate controller parameters can be found by DSO for the inverters. The DSO is verified via 28 critical N-1 contingencies of Hawai‘i Island system identified by Hawaiian Electric. The simulation results verify the effectiveness of DSO, and show significant stability improvement from DSO.
Introduction Systemic corticosteroids are the mainstay of treatment for immune checkpoint inhibitor induced (CPI) colitis but are associated with complications including life-threatening infection. The topically acting oral corticosteroid beclomethasone dipropionate (BD) is an effective treatment for mild to moderate flares of ulcerative colitis, and has fewer side effects than systemic corticosteroids. We hypothesized that BD would be an effective treatment for CPI-induced colitis. Methods We performed a retrospective analysis of all patients who started BD for CPI-induced colitis at three UK cancer centers between November 2017 and October 2020. All patients underwent endoscopic assessment and biopsy. The initial regimen of BD was 5 mg once daily for 28 days. Data were collected from electronic patient records. Clinical outcomes were assessed at 28 days after initiation of treatment. Results Twenty-two patients (14 male) with a median age of 64 (range 45–84) with CPI-induced colitis were treated with BD. At baseline, the median number of loose stools in a 24-hour period was six (common terminology criteria for adverse events, CTCAE grade diarrhea=2). Thirteen patients (59%) were dependent on systemic corticosteroids prior to starting BD. Baseline sigmoidoscopy showed moderate inflammation (Mayo Endoscopic Score (MES) = 2) in two patients (9%), mild inflammation (MES=1) in nine patients (41%) and normal findings (MES=0) in eleven patients (50%). Twenty patients (91%) had histopathological features of inflammation. All 22 patients (100%) had a clinical response to BD and 21 (95%) achieved clinical remission with a return to baseline stool frequency (CTCAE diarrhea=0). Ten patients (45%) had symptomatic relapse on cessation of BD, half within 7 days of stopping. All patients recaptured response on restarting BD. No adverse events were reported in patients treated with BD. Conclusions Topical BD represents an appealing alternative option to systemic immunosuppressive treatments to treat colonic inflammation. In this study, BD was effective and safe at inducing remission in CPI-induced colitis, which was refractory to systemic corticosteroids. Further randomized studies are needed to confirm these findings and determine the optimum dosing regimen.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više