The design of effective transcutaneous systems demands the consideration of inevitable variations in tissue characteristics, which vary across body areas, among individuals, and over time. The purpose of this paper was to design and evaluate several printed antenna topologies for ultrahigh frequency (UHF) transcutaneous power transfer to implantable medical devices, and to investigate the effects of variations in tissue properties on dipole and loop topologies. Here, we show that a loop antenna topology provides the greatest achievable gain with the smallest implanted antenna, while a dipole system provides higher impedance for conjugate matching and the ability to increase gain with a larger external antenna. In comparison to the dipole system, the loop system exhibits greater sensitivity to changes in tissue structure and properties in terms of power gain, but provides higher gain when the separation is on the order of the smaller antenna dimension. The dipole system was shown to provide higher gain than the loop system at greater implant depths for the same implanted antenna area, and was less sensitive to variations in tissue properties and structure in terms of power gain at all investigated implant depths. The results show the potential of easily-fabricated, low-cost printed antenna topologies for UHF transcutaneous power, and the importance of environmental considerations in choosing the antenna topology.
Abstract Diffuse phosphorus (P) losses from arable land need to be reduced in a cost-efficient way, taking into account their temporal and spatial variability. This study, based on 16 farms across southern Sweden, examined possibilities for identifying critical source areas for P losses based on the combined results of high-resolution erosion modelling, independent risk assessments by farmers, soil survey and SWOT analysis performed by farmers. Statistically significant differences in dissolved P release were found between soil P test classes in the studied area, whereas soil textural classes and not P content governed potential mobilisation of soil particles and unreactive P. Spatial comparison of problem areas identified by farmers and modelled features showed that the modelled erosion pathways intersected 109 in a total of 128 (85%) observed problem areas. The study demonstrates the value in involving farmers in the identification of critical source areas in order to select and support implementation of effective countermeasures.
The original article [1] contains an error whereby a co-author, Boris Sakakushev has their family name spelt incorrectly as 'Sakakhushev'. The authors would therefore like it known that the correct spelling of the family name is 'Sakakushev'.
1 University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Belgrade, Serbia 2 Prydniprovsk State Academy of Civil Engineering and Architecture, Dnipropetrovsk, Ukraine 3 University of Zenica, Faculty of Metallurgy and Material Science, Zenica, Bosnia and Herzegovina 4 University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia 5 University of Belgrade, Technical Faculty in Bor, Bor, Serbia * E-mail: zstevic@tfbor.bg.ac.rs
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više