ABSTRACT Transitional justice and diaspora studies are interdisciplinary and expanding fields of study. Finding the right combination of mechanisms to forward transitional justice in post-conflict polities is an ongoing challenge for states and affected populations. Diasporas, as non-state actors with increased agency in homelands, host-lands, and other global locations, engage with their past from a distance, but their actions are little understood. This introductory article to a special issue develops a novel framework to study causal mechanisms and their underlying analytical rationales – emotional, cognitive, symbolic/value-based, strategic, and networks-based – linking diasporas and local actors in transitional justice. Mechanisms featured are: thin sympathetic response and chosen trauma, fear and hope, contact and framing, cooperation and coalition-building, brokerage, patronage, and connective action, among others. The contributors theorize about causal mechanisms and their sequences involving diasporas in multi-sited transitional justice processes and bring empirical evidence from various world regions.
Recently a framework was presented to assess whether pediatric covariate models for clearance can be extrapolated between drugs sharing elimination pathways, based on extraction ratio, protein binding, and other drug properties. Here we evaluate when a pediatric covariate function for midazolam clearance can be used to scale clearance of other CYP3A substrates. A population PK model including a covariate function for clearance was developed for midazolam in children aged 1–17 years. Commonly used CYP3A substrates were selected and using the framework, it was assessed whether the midazolam covariate function accurately scales their clearance. For eight substrates, reported pediatric clearance values were compared numerically and graphically with clearance values scaled using the midazolam covariate function. For sildenafil, clearance values obtained with population PK modeling based on pediatric concentration-time data were compared with those scaled with the midazolam covariate function. According to the framework, a midazolam covariate function will lead to systemically accurate clearance scaling (absolute prediction error (PE) < 30%) for CYP3A substrates binding to albumin with an extraction ratio between 0.35 and 0.65 when binding < 10% in adults, between 0.05 and 0.55 when binding > 90%, and with an extraction ratio ranging between these values when binding between 10 and 90%. Scaled clearance values for eight commonly used CYP3A substrates were reasonably accurate (PE < 50%). Scaling of sildenafil clearance was accurate (PE < 30%). We defined for which CYP3A substrates a pediatric covariate function for midazolam clearance can accurately scale plasma clearance in children. This scaling approach may be useful for CYP3A substrates with scarce or no available pediatric PK information.
As robots become more prevalent in public spaces, such as museums, malls, and schools, they are coming into increasing contact with groups of people, rather than just individuals. Groups, compared to individuals, can differ in robot acceptance based on the mere presence of a group, group characteristics such as entitativity (i.e., cohesiveness), and group social norms; however, group dynamics are seldom studied in relation to robots in naturalistic settings. To examine how these factors affect human-robot interaction, we observed 2,714 people in a Japanese mall receiving directions from the humanoid robot Robovie. Video and survey responses evaluating the interaction indicate that groups, especially entitative groups, interacted more often, for longer, and more positively with the robot than individuals. Participants also followed the social norms of the groups they were part of; participants who would not be expected to interact with the robot based on their individual characteristics were more likely to interact with it if other members of their group did. These results illustrate the importance of taking into account the presence of a group, group characteristics, and group norms when designing robots for successful interactions in naturalistic settings.
Recent studies investigating the evolution of genome size diversity in ferns have shown that they have a distinctive genome profile compared with other land plants. Ferns are typically characterized by possessing medium‐sized genomes, although a few lineages have evolved very large genomes. Ferns are different from other vascular plant lineages as they are the only group to show evidence for a correlation between genome size and chromosome number. In this study, we aim to explore whether the evolution of fern genome sizes is not only shaped by chromosome number changes arising from polyploidy but also by constraints on the average amount of DNA per chromosome. We selected the genus Asplenium L. as a model genus to study the question because of the unique combination of a highly conserved base chromosome number and a high frequency of polyploidy. New genome size data for Asplenium taxa were combined with existing data and analyzed within a phylogenetic framework. Genome size varied substantially between diploid species, resulting in overlapping genome sizes among diploid and tetraploid spleenworts. The observed additive pattern indicates the absence of genome downsizing following polyploidy. The genome size of diploids varied non‐randomly and we found evidence for clade‐specific trends towards larger or smaller genomes. The 578‐fold range of fern genome sizes have arisen not only from repeated cycles of polyploidy but also through clade‐specific constraints governing accumulation and/or elimination of DNA.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više