Fetal movement counts have long been used as a measure of fetal well-being but with advancing technology, such counts have been supplanted as the primary measure. Despite the new technologies used in standard clinical practice, the stillbirth rate has not reduced significantly worldwide. Each method of assessing fetal movement has limitations with different methods performing better in different situations. No one method is universally superior. This paper aims to introduce the reader to the broad range of assessment methods, both potential and actual, used to determine fetal movement. These assessment methods are assembled into a taxonomy: maternal involvement, clinician involvement, technology-assisted, and automated technology. A brief historical and technological overview and the expected measurements of each assessment method are described. All reviewed methods have value, but actography appears to offer the most potential by complementing existing approaches. Further research is required to evaluate the suitability of fetal movement assessment and the response to it.
This paper presents results of fractal analysis of fracture systems in upper Triassic dolomites in Žumberak Mountain, Croatia. Mechanical rock characteristics together with structural and diagenetic processes results with fracture systems that can be considered as fractals. They are scale-invariant in specific range of scales. Distribution of fractures can be than described with power law distribution and fractal dimension. Fractal dimension is a measure of how fractures fill the space. Fractal dimension can be estimated form photographs of outcrops by converting photographs to binary photographs. In binary photo there is only black (rock or fractures) and white (fractures or rock). Fractal dimension is then estimated based on box-counting method. In this paper we present results of fractal analysis from three outcrops. Results are very similar to previous published results from outcrops of dolomites in Slovenia. Obtained fractal dimensions are in range 2,69-2,78 and it depends on how fracture systems are distributed in the outcrop. Lower values indicate smaller number of fractures and higher significance of larger fractures. Higher values indicate distribution of more similar sized fractures throughout whole outcrop. Fractal dimension is very significant parameter in rock fracture system characterisation sense it describes how fractures are distributed in the outcrop. It can be used in discrete fracture network modelling if spatial distribution of fractures is represented with power law distribution.
Istraživanje ključnih faktora kvalitete procesa građevinskih projakata u Bosni i Hercegovini te Hrvatskoj, pokazalo je da te faktore ne prihvaćaju jednako investitori, izvođači/podizvođači i voditelji projekta/konzultanti/projektanati. Prva četiri rangirana faktora su: koordinacija među sudionicima, komunikacija; stručnost/ znanje...; planiranje i kontrola, s različitim prioritetom unutar spomenutih sudionika. Istraživanje je nadalje pokazalo kako tijekom različitih faza građevinskog projekta važnost se pojedinih faktora kvalitete razlikuje s obzirom na različita upravljačka gledišta.
Ionizing radiation from natural sources or anthropogenic activity has the potential to cause oxidative stress or genetic damage in living organisms, through the ionization and excitation of molecules and the subsequent production of free radicals and reactive oxygen species (ROS). The present work focuses on radiation-induced biological effects using the zebrafish (Danio rerio) vertebrate model. Changes in developmental traits and gene expression in zebrafish were assessed after continuous external gamma irradiation (0.4, 3.9, 15 and 38 mGy/h) with corresponding controls, starting at 2.5 hours post fertilization (hpf) and lasting through embryogenesis and the early larval stage. The lowest dose rate corresponded to recommended benchmarks at which adverse effects are not expected to occur in aquatic ecosystems (2–10 mGy/day). The survival observed at 96 hours post fertilization (hpf) in the 38 mGy/h group was significantly lower, while other groups showed no significant difference compared to controls. The total hatching was significantly lower from controls in the 15 mGy/h group and a delay in hatching onset in the 0.4 mGy/h group was observed. The deformity frequency was significantly increased by prolonged exposure duration at dose rates ≥ 0.4 mGy/h. Molecular responses analyzed by RNA-seq at gastrulation (5.5 hpf transcriptome) indicate that the radiation induced adverse effects occurred during the earliest stages of development. A dose-response relationship was found in the numbers of differentially regulated genes in exposure groups compared to controls at a total dose as low as 1.62 mGy. Ingenuity Pathway Analysis identified retinoic acid receptor activation, apoptosis, and glutathione mediated detoxification signaling as the most affected pathways in the lower dose rate (0.54 mGy/h), while eif2 and mTOR, i.e., involved in the modulation of angiogenesis, were most affected in higher dose rates (5.4 and 10.9 mGy/h). By comparing gene expression data, myc was found to be the most significant upstream regulator, followed by tp53, TNF, hnf4a, TGFb1 and cebpa, while crabp2b and vegfab were identified as most frequent downstream target genes. These genes are associated with various developmental processes. The present findings show that continuous gamma irradiation (≥ 0.54 mGy/h) during early gastrula causes gene expression changes that are linked to developmental defects in zebrafish embryos.
Penetration of grid connected inverters (GCI) has arisen in power systems due to increasing integration of renewable sources. However, restrictive grid codes require that renewable sources connected to the grid with power electronic systems must be properly connected and appropriate currents must be injected to support stability of the grid under grid faults. Simultaneous injection of symmetrical positive and negative sequence currents is mandatory to support stabilization of grid at the instant of grid faults. Conventional synchronously rotating frame dq current controllers are insufficient under grid faults due to low bandwidth of PI controllers. This paper proposes a new grid current control strategy for grid connected voltage source inverters under unbalanced grid voltage conditions. A proportional current controller with a first order low pass filter disturbance observer (DOb) is proposed which establishes positive sequence power requirements and independently control negative sequence current components under unbalanced voltage conditions. The method does not need any parameter, since it estimates nonlinear terms with low pass filter DOb. Simulations are implemented in Matlab/Simulink platform demonstrating the effectiveness of proposed method.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više