Human brucellosis during pregnancy is characterized by significantly less pronounced adverse obstetric outcomes than in animals, but with remarkably more adverse obstetric outcomes when compared to healthy pregnant women. Seroprevalence of brucellosis in pregnancy and cumulative incidence of brucellosis cases per 1000 delivered obstetrical discharges in endemic regions were reported to be 1.5–12.2% and 0.42–3.3, respectively. Depending on the region, the frequency of pregnant women in the cohorts of patients with brucellosis was from 1.5% to 16.9%. The most common and the most dramatic unfavorable outcomes during brucellosis in pregnancy are the obstetric ones, manifested as abortions (2.5–54.5%), intrauterine fetal death (0–20.6%), or preterm deliveries (1.2–28.6%), depending on the stage of pregnancy. Other unfavorable outcomes due to brucellosis are addressed to infant (congenital/neonatal brucellosis, low birth weight, development delay, or even death), the clinical course of disease in mother, and delivery team exposure. When diagnosed in pregnant women, brucellosis should be treated as soon as possible. Early administration of adequate therapy significantly reduces the frequency of adverse outcomes. Rifampicin in combination with trimethoprim-sulfamethoxazole for 6 weeks is the most commonly used and recommended regimen, although monotherapies with each of these two drugs are also widely used while waiting for the results from prospective randomized therapeutic trials. As no effective human vaccine exists, screening of pregnant women and education of all women of childbearing age about brucellosis should be compulsory preventive measures in endemic regions.
The rapid growth in subscribers and usage of multimedia services enlarges the volume of Session Initiation Protocol (SIP) call control signalling creating a need to understand Quality of Experience (QoE) in this case and improve it. This paper provides an analysis of influence of SIP call control signalling on QoE for Voice over Internet Protocol (VoIP) service. The aim was to investigate whether SIP call control signalling load has the influence on the human perception of SIP signalling performances and QoE, and to identify the importance of distinct SIP-based signalling performance metrics. Moreover, the intention was to determine whether SIP call control signalling load changes its impact if previously proposed algorithm for differentiated treatment of SIP messages is activated, and quantify mutual relationships of considered user perceptions and QoE. The findings show that SIP call control signalling load has a strong and negative impact on dependent variables and that the proposed algorithm improves QoE and human perception of SIP signalling performances.
Human activity recognition (HAR) is a classification process that is used for recognizing human motions. A comprehensive review of currently considered approaches in each stage of HAR, as well as the influence of each HAR stage on energy consumption and latency is presented in this paper. It highlights various methods for the optimization of energy consumption and latency in each stage of HAR that has been used in literature and was analyzed in order to provide direction for the implementation of HAR in health and wellbeing applications. This paper analyses if and how each stage of the HAR process affects energy consumption and latency. It shows that data collection and filtering and data segmentation and classification stand out as key stages in achieving a balance between energy consumption and latency. Since latency is only critical for real-time HAR applications, the energy consumption of sensors and devices stands out as a key challenge for HAR implementation in health and wellbeing applications. Most of the approaches in overcoming challenges related to HAR implementation take place in the data collection, filtering and classification stages, while the data segmentation stage needs further exploration. Finally, this paper recommends a balance between energy consumption and latency for HAR in health and wellbeing applications, which takes into account the context and health of the target population.
Abstract 3D - Conformal Radiotherapy (3DCRT) for decades was a standard technique in the prostate cancer radical radiotherapy treatment. Technological advances and implementation of an innovative radiotherapy technique-Intensity Modulated Radiation Therapy (IMRT), enable even more precise treatment of the prostate cancer patients. Intensity Modulated Radiation Therapy (IMRT) is a technological advancement in Conformal Radiotherapy which allows superior conformity and homogeneity of the absorbed dose in planning target volume with maximal sparing organs of risk. This technique gives us possibility to escalate the radiotherapy dose, prerequisite for the adequate local tumor control. Evaluation of dosimetric parameters 3DCRT vs. IMRT: the homogeneity index, the conformity index, parameters of absorbed dose in planning target volume, dose volume constraints for organs of risk shows that IMRT is an optimal technique in the prostate cancer radical treatment.
The Editors' Network of the European Society of Cardiology (ESC) provides a dynamic forum for editorial discussions and endorses the recommendations of the International Committee of Medical Journal Editors (ICMJE) to improve the scientific quality of biomedical journals. Authorship confers credit and important academic rewards. Recently, however, the ICMJE emphasized that authorship also requires responsibility and accountability. These issues are now covered by the new -(fourth) criterion for authorship. Authors should agree to be accountable and ensure that questions regarding the accuracy and integrity of the entire work will be appropriately addressed. This review discusses the implications of this paradigm shift on authorship requirements with the aim of increasing awareness on good scientific and editorial practices.
Percolation properties of two-component mixtures are studied by Monte Carlo simulations. Objects are deposited onto a substrate according to the random sequential adsorption model. Various shapes making the mixtures are made by self-avoiding walks on a triangular lattice. Percolation threshold for mixtures of objects covering the same number of sites is always lower than for the more compact object, and it can be even lower than for both components. Mixtures of percolating and non-percolating objects almost always percolate, but the percolation threshold is higher than for the percolating component. Adding a shape of high connectivity to a system of compact non-percolating objects, makes the deposit percolate. Lowest percolation thresholds are obtained for mixtures with elongated angled objects. Dependence of on the object length exhibits a minimum, so it could be estimated that the angled objects of length give the largest contribution to the percolation.
Dishevelled family proteins (DVL1, DVL2, and DVL3) are cytoplasmic mediators involved in canonical and non‐canonical Wnt signaling that are important for embryonic development. Since Wnt signaling promotes cell proliferation and invasion, its increased activation is associated with cancer development as well. To get deeper insight into the behavior of Dishevelled proteins in cancer, we studied their expression in serous ovarian carcinomas [both low‐ (LGSC) and high‐grade (HGSC)], and HGSC cell lines OVCAR5, OVCAR8, and OVSAHO. DVL protein expression in serous ovarian carcinomas tissues was analyzed using immunohistochemistry, while DVL protein and mRNA expressions in HGSC cell lines were analyzed using Western blot and quantitative real‐time PCR. DVL1 protein expression was significantly higher in LGSC compared with normal ovarian tissue, while DVL3 was overexpressed in both LGSC and HGSC. DVL2 and DVL3 protein expression was higher in HGSC cell lines when compared with normal control cell line FNE1, while DVL1, DVL2, and DVL3 mRNA expression was significantly increased only in OVSAHO cell line. Survival analysis revealed no significant impact of DVL proteins on patients’ outcome. Our data show an active involvement of Dishevelled family proteins in serous ovarian carcinomas. Further studies should confirm the clinical relevance of these observations.
Clostridioides difficile (CD) is a spore-forming bacterium that causes life-threatening intestinal infections in humans. Although formerly regarded as exclusively nosocomial, there is increasing genomic evidence that person-to-person transmission accounts for only <25% of cases, supporting the culture-based hypothesis that foods may be routine sources of CD-spore ingestion in humans. To synthesize the evidence on the risk of CD exposure via foods, we conducted a systematic review and meta-analysis of studies reporting the culture prevalence of CD in foods between January 1981 and November 2019. Meta-analyses, risk-ratio estimates, and meta-regression were used to estimate weighed-prevalence across studies and food types to identify laboratory and geographical sources of heterogeneity. In total, 21886 food samples were tested for CD between 1981 and 2019 (96.4%, n = 21084, 2007–2019; 232 food-sample-sets; 79 studies; 25 countries). Culture methodology, sample size and type, region, and latitude were sources of heterogeneity (p < 0.05). Although non-strictly-anaerobic methods were reported in some studies, and we confirmed experimentally that improper anaerobiosis of media/sample-handling affects CD recovery in agar (Fisher, p < 0.01), most studies (>72%) employed the same (one-of-six) culture strategy. Because the prevalence was also meta-analytically similar across six culture strategies reported, all studies were integrated using three meta-analytical methods. At the study level (n = 79), the four-decade global cumulative-prevalence of CD in the human diet was 4.1% (95%CI = −3.71, 11.91). At the food-set level (n = 232, mean 12.9 g/sample, similar across regions p > 0.2; 95%CI = 9.7–16.2), the weighted prevalence ranged between 4.5% (95%CI = 3–6%; all studies) and 8% (95%CI = 7–8%; only CD-positive-studies). Risk-ratio ranking and meta-regression showed that milk was the least likely source of CD, while seafood, leafy green vegetables, pork, and poultry carried higher risks (p < 0.05). Across regions, the risk of CD in foods for foodborne exposure reproducibly decreased with Earth latitude (p < 0.001). In conclusion, CD in the human diet is a global non-random-source of foodborne exposure that occurs independently of laboratory culture methods, across regions, and at a variable level depending on food type and latitude. The latitudinal trend (high CD-food-prevalence toward tropic) is unexpectedly inverse to the epidemiological observations of CD-infections in humans (frequent in temperate regions). Findings suggest the plausible hypothesis that ecologically-richer microbiomes in the tropic might protect against intestinal CD colonization/infections despite CD ingestion.
The growth of an extended supramolecular network using dipolar molecules as the building blocks is of great technological interest. We investigated the self-assembly of a dipolar molecule on an Au(111) surface. The formation of an extended two-dimensional network was demonstrated by scanning tunnelling microscopy under ultra-high vacuum and explained in terms of molecule–molecule interactions. This 2D-network is still stable under the pressure of one atmosphere of nitrogen, which demonstrated its interest for the development of submolecular-precisely polyfunctional smart surfaces.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više