Gastrointestinal nematode (GIN) infections remain one of the most prevalent and important issue affecting ruminants worldwide. Until date, the majority of GIN control has relied on the administra-tion of chemical anthelmintic medications on a regular basis, in recent years, the problem of anthel-mintic resistance has reached new heights where it can no longer be ignored as a major issue in the control of parasites of livestock. Anthelmintics are generally used at farmers' discretion, with no restrictions to access to commercially available drugs and without any assistance from veterinarians. Thus, inadequate use of anthelmintics is not rare, animals are often treated excessively, interfering with production, accelerating selection of resistant parasites, and posing significant problems for the ruminant industry. The unusually high frequency of multi-drug resistance (MDR) in sheep and goat nematodes threatens the sustainability of small-ruminant enterprises in several parts of the world. Although resistance in horses and cattle nematodes has not yet reached the levels reported in small ruminants, data shows that resistance issues, particularly MDR worms, are rising in these hosts. Both innovative non-chemical parasite control methods and molecular tests capable of detecting resistant worms are urgently needed. Keywords: Anthelmintics; Multidrug resistance; Gastrointestinal nematodes; Ruminants; Preva-lence
The infection with SARS-CoV-2 virus in cats and dogs raised issue of human-to-animal transmission of SARS-CoV-2 in domestic pets in close contacts with their owners. Our study was designed to research this in the framework of Bosnia and Herzegovina. Using ELISA, AFIAS fluorescent immunoassay, RT-qPCR and WGS on Nanopore MinION platform with ARTIC Network Amplicon sequencing protocol for SARS-CoV-2, we showed that three out of thirteen dogs and one out of five cats from the households with confirmed human cases of COVID-19 in Bosnia-Herzegovina were infected with SARS-CoV-2. The high viral RNA load was detected in samples collected from a 4-year-old male Havanese (Ct = 12.52), a 6-year-old German Shepherd (Ct = 21.36) and a 9-year-old female American Staffordshire terrier (Ct = 25.74). The antibody response in dogs and one cat was observed. The viral genetic sequences from dogs were identical to the sequences detected in the owners suggesting the human-to-animal transmission of the virus. These findings, especially the low initial Ct values detected, from the public health perspective additionally stress the need for precautionary measures to protect both humans and animals.
Abstract Background Crimean–Congo haemorrhagic fever (CCHF) is a widespread tick‐borne zoonosis with reported detection of virus and/or virus‐specific antibodies from over 57 countries across Africa, Asia, Europe and the Middle East and is endemic in the Balkans. Detection of Crimean–Congo Haemorrhagic Fever Virus (CCHFV) antibodies in domestic ruminants has been important in providing initial evidence of virus circulation and in localising CCHFV high‐risk spots for human infection. Objectives The present study investigated the possible exposure of sheep to CCHFV in Bosnia and Herzegovina (B&H). Methods To investigate the presence of anti‐CCHFV antibodies in sheep, all sera (n = 176) were tested using multi‐species double antigen enzyme‐linked immunosorbent assay (ELISA). Reactive sera were further complementary tested by adapted commercial indirect immunofluorescence assay (IFA) using FITC‐conjugated protein G instead of anti‐human immunoglobulins. Results CCHFV specific antibodies were detected in 17 (9.66%) animals using ELISA test. All negative sera were determined as negative by both tests, while 13 out of 17 ELISA‐positive reactors were also determined as unambiguously positive by IFA test. The age group with the highest proportion of seropositive rectors were the oldest animals. Conclusions This is the first report of anti‐CCHFV antibodies in sheep from B&H providing the evidence of CCHFV circulation in the country's sheep population. So far, these findings indicate the circulation of the virus in the westernmost region of the Balkans and point to the potential CCHFV spread further out of this endemic area.
Many wild animal populations are considered endangered due to anthropogenic activities. Wildlife and nature habitat preservation requires holistic and science based approaches supported by adequate regulations. One of the means for wildlife preservation is undoubtedly heath monitoring and investigation of infectious diseases of the wild animal populations, particularly if spillover effects are considered. Even though the theoretical background is well researched, implementation of disease prevention and control measures in wildlife populations entails more challenges than in domestic animal populations. Immediate signs of health disorders in wildlife often become evident when the infectious agent is well established in an area. Additionally, due to unrestricted and often long-range movement of wildlife, diseases are easily spread across borders. Brown bears, indigenous in Europe, are classified by EU regulations as endangered, almost extinct and rare. The wild bear population in Bosnia and Herzegovina shares a genetic lineage with bear populations of neighbouring Croatia, Serbia and Montenegro and is one of the few remaining fragments of bear populations in Europe. The aim of this paper is to describe implemented activities for health and telemetric monitoring of wild bears in the Nature Park Skakavac, Canton Sarajevo, Bosnia and Herzegovina.
The International Organisation for Animal Health (OIE), from the onset of COVID-19 pandemic, promoted One Health in global and national responses. The OIE accentuated the role of the veterinary profession due to testing capacity of animal health laboratories and expertise. Veterinary Faculty Sarajevo through its Veterinary Institute participates in the national veterinary service with diagnostic and advisory roles. It has proactively enhanced the scope and quality of laboratories, including strengthening the interdisciplinarity and internationality. Development achieved through earlier pandemic threats resulted in having laboratory and technical facilities for molecular SARS-CoV-2 detection in the wake of the unveiling COVID-19 pandemic (early 2020). From confirmation of the first COVID-19 cases in Bosnia and Herzegovina (BiH), our staff participated in crisis response teams and, so far, held over sixty media addresses promoting public awareness and science based information. Our laboratories were included in the official detection system and were the first to sequence SARS-CoV-2, then to establish the Alpha COVID-19 variant in BiH human samples and to substantiate one-way virus transmission from humans to pets. The aim of this paper is to describe our activities as a participant in the response to the COVID-19 pandemic, alongside faced challenges and gained experiences.
Background: According to the WHO (2019), more than 1.5 billion people worldwide are infected with soil-transmitted parasites. Previous research in the Federation of Bosnia and Herzegovina (FB&H) was mainly conducted in the area of the Sarajevo Canton. Therefore, the aim of the research was to explore contamination of soil and vegetation with developmental forms of parasites in the other cantons of FB&H. Methods: Between Apr and Oct 2018, a total of 1,618 soil and vegetation samples were taken from 386 different locations in the 9 cantons of the FB&H. Results: Positive samples were observed, 65/66 (98.48%) municipalities/cities and on 239/386 (61.92%) locations. Out of 1,618 samples taken in total (1,263 soil samples and 355 vegetation samples), 357 (22.06%) were positive, out of which 337 (26.68%) and 20 (5.63%) were soil and plant samples, respectively. In total, the following adult and developmental forms were identified: Taeniidae eggs (7.30%), Toxocara spp. eggs (62.08%), Ancylostomatidae eggs (25.00%), Trichuris spp. eggs (9.55%), Capillaria spp. eggs (3.37%), Toxascaris leonina eggs (1.40%), Nematodes larvae (19.38%), Giardia duodenalis cysts (5.06%), Cryptosporidium spp. oocysts (1.4%), oocysts and cysts of different species of Protozoa (3.93%). Conclusion: The identified developmental forms of parasites pose a permanent threat to human health. It is necessary to carry out measures to reduce the contamination of soil and vegetation in coordination with systematic solutions (legislation), paralelly with contribution of animal owners, veterinarians, physicians, ecologists, parents and all the others involved in this issue.
Abstract More than 30 dog parasite species have been identified in Bosnia and Herzegovina so far, and half of these are zoonotic. The aim of the study was to investigate the occurrence of parasitic infections in dogs from Bosnian-podrinje canton with a focus on zoonotic parasites. The study included 212 dogs (107 owned and 105 stray). One or more of the twenty parasite species were found in 82.55% of tested samples. Dicrocoelium dendriticum (Class Trematoda) was found in 0.94% of dogs. Dipylidium caninum and Mesocestoides lineatus (Class Cestoda) were found in 7.55% and 0.94% of dogs, respectively. Taenia spp. and Echinococcus spp. (Family Taeniidae) were found in 0.47% and 0.94% of samples, respectively. In the family of Nematoda, the following parasite species were identified with corresponding percent among tested dogs: Toxocara canis (25.94%), Toxascaris leonine (8.96%), Strongyloides stercoralis (0.47%), Ancylostoma caninum (3.77%), Uncinaria stenocephala (52.36%), Trichuris vulpis (22.17%), Eucoleus aerophilus (1.42%), Dirofilaria immitis (1.89%) and Dirofilaria repens (1.42%). In the kingdom of Protozoa, the following parasite species were identified with corresponding percent among tested dogs: Cystoisospora canis (8.49%), C. ohioensis (2.36%), Cryptosporidium spp. (4.72%), Sarcocystis spp. (0.47%), Babesia spp. (5.19%), and Giardia duodenalis (15.57%). Leishmania infantum was not identified in tested samples. The results showed a high level of parasitic infestation in the dog population in the Bosnian-Podrinje canton, with a high occurrence of zoonotic parasites. Significant differences were found between owned and stray dogs for all classes of detected parasites with exception of the class Trematoda, disregarding specific parasite species.
Sand flies (Diptera: Psychodidae) are medically important vectors of human and veterinary disease-causing agents. Among these, the genus Leishmania (Kinetoplastida: Trypanosomatidae), and phleboviruses are of utmost importance. Despite such significance, updated information about sand fly fauna is missing for Balkan countries where both sand flies and autochtonous leishmaniases are historically present and recently re-emerging. Therefore, a review of historical data on sand fly species composition and distribution in the region was followed by a large-scale entomological survey in eight Balkan countries to provide a recent update on local sand fly fauna. The literature search involved the period 1910–2019. The entomological survey was conducted at 1189 sampling stations in eight countries (Bulgaria, Bosnia and Herzegovina, Croatia, Kosovo, Montenegro, North Macedonia, Serbia and Slovenia), covering 49 settlements and 358 sampling sites between June and October in the years 2014 and 2016, accumulating 130 sampling days. We performed a total of 1189 trapping nights at these stations using two types of traps (light and CO2 attraction traps) in each location. Sampling was performed with a minimal duration of 6 (Montenegro) and a maximal of 47 days (Serbia) between 0–1000 m.a.s.l. Collected sand flies were morphologically identified. In total, 8490 sand fly specimens were collected. Morphological identification showed presence of 14 species belonging to genera Phlebotomus and Sergentomyia. Historical data were critically reviewed and updated with our recent findings. Six species were identified in Bosnia and Herzegovina (2 new records), 5 in Montenegro (2 new records), 5 in Croatia (2 new records), 9 in Bulgaria (5 new records), 11 in North Macedonia (1 new record), 10 in Serbia (no new records), 9 in Kosovo (3 new records) and 4 in Slovenia (no new records). This study presents results of the first integrated sand fly fauna survey of such scale for the Balkan region, providing first data on sand fly populations for four countries in the study area and presenting new species records for six countries and updated species lists for all surveyed countries. Our findings demonstrate presence of proven and suspected vectors of several Leishmania species.
Introduction This paper reviews the current knowledge and understanding of Cryptosporidium spp. and Giardia spp. in humans, animals and the environment in 10 countries in the eastern part of Europe: Bosnia and Herzegovina, Croatia, Czech Republic, Estonia, Hungary, Latvia, Poland, Romania, Serbia and Slovenia. Methods: Published scientific papers and conference proceedings from the international and local literature, official national health service reports, national databases and doctoral theses in local languages were reviewed to provide an extensive overview on the epidemiology, diagnostics and research on these pathogens, as well as analyse knowledge gaps and areas for further research. Results: Cryptosporidium spp. and Giardia spp. were found to be common in eastern Europe, but the results from different countries are difficult to compare because of variations in reporting practices and detection methodologies used. Conclusion: Upgrading and making the diagnosis/detection procedures more uniform is recommended throughout the region. Public health authorities should actively work towards increasing reporting and standardising reporting practices as these prerequisites for the reported data to be valid and therefore necessary for appropriate control plans.
BackgroundRecently, Balkan virus (BALKV, family Phenuiviridae, genus Phlebovirus) was discovered in sand flies collected in Albania and genetically characterised as a member of the Sandfly fever Naples species complex. To gain knowledge concerning the geographical area where exposure to BALKV exists, entomological surveys were conducted in 2014 and 2015, in Croatia, Bosnia and Herzegovina (BH), Kosovo, Republic of Macedonia and Serbia.ResultsA total of 2830 sand flies were trapped during 2014 and 2015 campaigns, and organised as 263 pools. BALKV RNA was detected in four pools from Croatia and in one pool from BH. Phylogenetic relationships were examined using sequences in the S and L RNA segments. Study of the diversity between BALKV sequences from Albania, Croatia and BH showed that Albanian sequences were the most divergent (9–11% [NP]) from the others and that Croatian and BH sequences were grouped (0.9–5.4% [NP]; 0.7–5% [L]). The sand fly infection rate of BALKV was 0.26% in BH and 0.27% in Croatia. Identification of the species content of pools using cox1 and cytb partial regions showed that the five BALKV positive pools contained Phlebotomus neglectus DNA; in four pools, P neglectus was the unique species, whereas P. tobbi DNA was also detected in one pool.ConclusionsWe report here (i) the first direct evidence that the Balkan virus initially described in coastal Albania has a much wider dissemination area than originally believed, (ii) two real-time RT-PCR assays that may be useful for further screening of patients presenting with fever of unknown origin that may be caused by Balkan virus infection, (iii) entomological results suggesting that Balkan virus is likely transmitted by Phlebotomus neglectus, and possibly other sand fly species of the subgenus Larroussius. So far, BALKV has been detected only in sand flies. Whether BALKV can cause disease in humans is unknown and remains to be investigated.
Recently, Balkan virus (BALKV, family Phenuiviridae, genus Phlebovirus) was discovered in sand flies collected in Albania and genetically characterised as a member of the Sandfly fever Naples species complex. To gain knowledge concerning the geographical area where exposure to BALKV exists, entomological surveys were conducted in 2014 and 2015, in Croatia, Bosnia and Herzegovina (BH), Kosovo, Republic of Macedonia and Serbia. A total of 2830 sand flies were trapped during 2014 and 2015 campaigns, and organised as 263 pools. BALKV RNA was detected in four pools from Croatia and in one pool from BH. Phylogenetic relationships were examined using sequences in the S and L RNA segments. Study of the diversity between BALKV sequences from Albania, Croatia and BH showed that Albanian sequences were the most divergent (9–11% [NP]) from the others and that Croatian and BH sequences were grouped (0.9–5.4% [NP]; 0.7–5% [L]). The sand fly infection rate of BALKV was 0.26% in BH and 0.27% in Croatia. Identification of the species content of pools using cox1 and cytb partial regions showed that the five BALKV positive pools contained Phlebotomus neglectus DNA; in four pools, P neglectus was the unique species, whereas P. tobbi DNA was also detected in one pool. We report here (i) the first direct evidence that the Balkan virus initially described in coastal Albania has a much wider dissemination area than originally believed, (ii) two real-time RT-PCR assays that may be useful for further screening of patients presenting with fever of unknown origin that may be caused by Balkan virus infection, (iii) entomological results suggesting that Balkan virus is likely transmitted by Phlebotomus neglectus, and possibly other sand fly species of the subgenus Larroussius. So far, BALKV has been detected only in sand flies. Whether BALKV can cause disease in humans is unknown and remains to be investigated.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više