Logo

Publikacije (44)

Nazad

INTRODUCTION: Sphenoid sinus is located in the body of sphenoid, closed with a thin plate of bone tissue that separates it from the important structures such as the optic nerve, optic chiasm, cavernous sinus, pituitary gland, and internal carotid artery. It is divided by one or more vertical septa that are often asymmetric. Because of it’s location and the relationships with important neurovascular and glandular structures, sphenoid sinus represents a great diagnostic and therapeutic challenge. AIM: The aim of this study was to assess the septation of the sphenoid sinus and relationship between the number and position of septa and internal carotid artery in the adult BH population. PARTICIPANTS AND METHODS: A retrospective study of the CT analisys of the paranasal sinuses in 200 patients (104 male, 96 female) were performed using Siemens Somatom Art with the following parameters: 130 mAs: 120 kV, Slice: 5 mm axial. Secondary coronal scans were then generated from original axial slices. Since the aim of this study was to evaluate anatomical variations of sphenoid sinus septation, only patients with no diseases within sphenoid sinus were included. RESULTS: Based on analysis of CT scans of patients we come to the conclusion of existence more than 1 sphenoid septum in 32% of male patients and 22.1% of female patients. In total, tying for the septum to the carotid canal at posterolateral wall of sinus was registered in 19.4% of male, and 16.8% female patients. CONCLUSION: Performing CT of paranasal sinuses before surgery is essential to avoid potential complications resulting from anatomical variations.

Although some myocardial bridges can be asymptomatic, their presence often causes coronary disease either through direct compression of the "tunnel" segment or through stimulation and accelerated development of atherosclerosis in the segment proximally to the myocardial bridge. The studied material contained 30 human hearts received from the Department of Anatomy. The hearts were preserved 3 to 5 days in 10% formalin solution. Thereafter, the fatty tissue was removed and arterial blood vessels prepared by careful dissection with special reference to the presence of the myocardial bridges. Length and thickness of the bridges were measured by the precise electronic caliper. The angle between the myocardial bridge fibre axis and other axis of the crossed blood vessel was measured by a goniometer. The presence of the bridges was confirmed in 53.33% of the researched material, most frequently (43.33%) above the anterior interventricular branch. The mean length of the bridges was 14.64 ± 9.03 mm and the mean thickness was 1.23 ± 1.32 mm. Myocardial bridge fibres pass over the descending blood vessel at the angle of 10-90 degrees. The results obtained on a limited sample suggest that the muscular index of myocardial bridge is the highest for bridges located on RIA, but that the difference is not significant in relation to bridges located on other branches. The results obtained suggest that bridges located on other branches, not only those on RIA, could have a great contractive power and, consequently, a great compressive force, which would be exerted on the wall of a crossed blood vessel.

In this paper, we demonstrate a capability of surface coil magnetic resonance imaging in the review of orbital blood vessels anatomy. Surface coil allows a better detection of small anatomic structures including vessels such as ophtalmic artery and its branches, and also orbital veins, particularly superior and inferior ophtalmic veins with accompanying branches. The best results are obtained by the use of T1 sequences with short TE and TR.

I. Hasanbegovic, Eldan Kapur, A. Kulenović, Asija Gojacic, Amela Džubur, J. Mušanović, E. Pepić

Objective: In recent years regional anesthesia has gained great popularity. However, like any other medical procedure, the regional anesthesia carries certain risk of unintended intraneural injection and consequential neurological complications. Studies in animals have suggested that intraneural application of local anesthetics may cause mechanical injury. Previous studies, however, have used small animal models and clinically irrelevant injection speed or equipment. In this study we used equipment and injection methods in common clinical use to study the consequences and pressure dynamics of intraneural injection. Our hypothesis is that an intraneural injection is heralded by higher injection pressure and leads to neurologic impairment in pigs. Materials and Methods: Ten pigs of mixed breed (21-26 kg, 4-6 months old) were studied. After general anesthesia, the sciatic nerves (n = 20) were exposed bilaterally. Under direct vision, a 25-gauge insulated nerve block needle was placed either intraneurally (n = 10) or perineurally (n = 10), and 4 ml of preservative-free lidocaine 2% was injected using an automated infusion pump (15 ml/min). Injection pressure data were acquired using an in-line manometer coupled to a computer via an analog-to-digital conversion board. After injection, the animals were awakened and subjected to serial neurologic examinations during next 7 days. Results: All perineural injections resulted in injection pressures below 40 kPa. In contrast, intraneural injections resulted in significantly higher peak pressures (P 140 k Pa. Conclusion: High injection pressure (>140 kPa) predicts intraneural injection and consequential neurologic deficit. As long as the injection pressure is low, injection into poorly compliant tissue can be avoided and neurological complication can be prevented.

Eldan Kapur, Amina Mehić

The optic strut and the anterior clinoid process represent bony structures that are closely related to anatomically and clinically significant elements such as the cavernous sinus, the internal carotid artery, the optic nerve and the pituitary gland. The objective of our study was to quantify dimensions of the optic strut and anterior clinoid process, and to determine variations in positions and forms of these structures. A descriptive anatomical study was performed on 200 dry human skulls. We analyzed dimensions and variations in position of the optic strut, dimensions of the anterior clinoid process as well as the incidence and forms of the caroticoclinoid foramen. The average thickness of the optic strut on skulls belonging to males was 3 mm and 2.8 mm on those belonging to females. The optic strut was most commonly attached to the anterior two fifths on the lower side of the anterior clinoid process. On the male skulls the average width of the anterior clinoid process was 9.4 mm (right) and 9.1 mm (left). Its length was 9.9 and 9.3 mm. On female skulls the average width of the process was 8.7 mm (right) and 8.3 mm (left), while the length measured 9.3 mm on the right and 8.9 mm on the opposite side. In our sample, a complete caroticoclinoid foramen appeared in 4.25%, a contact form in 2.75%. At last, an incomplete form of the foramen was observed in 9.75%. The anatomic variations of the investigated structures must be considered during the approaches to the cavernous sinus and neurovascular elements of the sellar region.

Eldan Kapur, Adnan Kapidi, Amela Kulenovi, Lana Sarajli, Adis ahinovi, Maida ahinovi

Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više