Motivated by the recent paper [M.R.S. Kulenović, M. Nurkanović, and A.A. Yakubu, Asymptotic behaviour of a discrete-time density-dependent SI epidemic model with constant recruitment, J. Appl. Math. Comput. 67 (2021), pp. 733–753. DOI:10.1007/s12190-021-01503-2], in this paper, we consider the class of the SI epidemic models with recruitment where the Poisson function, a decreasing exponential function of the population of infectious individuals, is replaced by a general probability function that satisfies certain conditions. We compute the basic reproduction number We establish the global asymptotic stability of the disease-free equilibrium (GAS) for We use the Lyapunov function method developed in [P. van den Driessche and A.-A. Yakubu, Disease extinction versus persistence in discrete-time epidemic models, Bull. Math. Biol. 81 (2019), pp. 4412–4446], to demonstrate the GAS of the disease-free equilibrium and uniform persistence of the considered class of models. We show that the considered type of model is permanent for . For the transcritical bifurcation appears. For we prove the global attractivity result for endemic equilibrium and instability of the disease-free equilibrium. We apply theoretical results to specific escape functions of the susceptibles from infectious individuals. For each case, we compute the basic reproduction number .
<jats:p>We present the bifurcation results for the difference equation <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow> <msubsup> <mi>x</mi> <mi>n</mi> <mn>2</mn> </msubsup> </mrow> <mo>/</mo> <mfenced open="(" close=")" separators="|"> <mrow> <mi>a</mi> <msubsup> <mi>x</mi> <mi>n</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>x</mi> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <mi>f</mi> </mrow> </mfenced> </math> </jats:inline-formula> where <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2"> <mi>a</mi> </math> </jats:inline-formula> and <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3"> <mi>f</mi> </math> </jats:inline-formula> are positive numbers and the initial conditions <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4"> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msub> </math> </jats:inline-formula> and <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M5"> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> </math> </jats:inline-formula> are nonnegative numbers. This difference equation is one of the perturbations of the sigmoid Beverton–Holt difference equation, which is a major mathematical model in population dynamics. We will show that this difference equation exhibits transcritical and Neimark–Sacker bifurcations but not flip (period-doubling) bifurcation since this difference equation cannot have period-two solutions. Furthermore, we give the asymptotic approximation of the invariant manifolds, stable, unstable, and center manifolds of the equilibrium solutions. We give the necessary and sufficient conditions for global asymptotic stability of the zero equilibrium as well as sufficient conditions for global asymptotic stability of the positive equilibrium.</jats:p>
Using the Kolmogorov–Arnold–Mozer (KAM) theory, we investigate the stability of May’s host–parasitoid model’s solutions with proportional stocking upon the parasitoid population. We show the existence of the extinction, boundary, and interior equilibrium points. When the host population’s intrinsic growth rate and the releasement coefficient are less than one, both populations are extinct. There are an infinite number of boundary equilibrium points, which are nonhyperbolic and stable. Under certain conditions, there appear 1:1 nonisolated resonance fixed points for which we thoroughly described dynamics. Regarding the interior equilibrium point, we use the KAM theory to prove its stability. We give a biological meaning of obtained results. Using the software package Mathematica, we produce numerical simulations to support our findings.
This paper is motivated by the series of research papers that consider parasitoids’ external input upon the host–parasitoid interactions. We explore a class of host–parasitoid models with variable release and constant release of parasitoids. We assume that the host population has a constant rate of increase, but we do not assume any density dependence regulation other than parasitism acting on the host population. We compare the obtained results for constant stocking with the results for proportional stocking. We observe that under a specific condition, the release of a constant number of parasitoids can eventually drive the host population (pests) to extinction. There is always a boundary equilibrium where the host population extinct occurs, and the parasitoid population is stabilized at the constant stocking level. The constant and variable stocking can decrease the host population level in the unique interior equilibrium point; on the other hand, the parasitoid population level stays constant and does not depend on stocking. We prove the existence of Neimark–Sacker bifurcation and compute the approximation of the closed invariant curve. Then we consider a few host–parasitoid models with proportional and constant stocking, where we choose well-known probability functions of parasitism. By using the software package Mathematica we provide numerical simulations to support our study.
This paper is motivated by the series of research papers that consider parasitoids’ external input upon the host–parasitoid interactions. We explore a class of host–parasitoid models with variable release and constant release of parasitoids. We assume that the host population has a constant rate of increase, but we do not assume any density dependence regulation other than parasitism acting on the host population. We compare the obtained results for constant stocking with the results for proportional stocking. We observe that under a specific condition, the release of a constant number of parasitoids can eventually drive the host population (pests) to extinction. There is always a boundary equilibrium where the host population extinct occurs, and the parasitoid population is stabilized at the constant stocking level. The constant and variable stocking can decrease the host population level in the unique interior equilibrium point; on the other hand, the parasitoid population level stays constant and does not depend on stocking. We prove the existence of Neimark–Sacker bifurcation and compute the approximation of the closed invariant curve. Then we consider a few host–parasitoid models with proportional and constant stocking, where we choose well-known probability functions of parasitism. By using the software package Mathematica we provide numerical simulations to support our study.
In this paper, we explore the dynamics of a certain class of Beddington host-parasitoid models, where in each generation a constant portion of hosts is safe from attack by parasitoids, and the Ricker equation governs the host population. Using the intrinsic growth rate of the host population that is not safe from parasitoids as a bifurcation parameter, we prove that the system can either undergo a period-doubling or a Neimark–Sacker bifurcation when the unique interior steady state loses its stability. Then, we apply the new theory to the following well-known cases: May’s model, [Formula: see text]-model, Hassel and Varley (HV)-model, parasitoid-parasitoid (PP) model and [Formula: see text] model. We use numerical simulations to confirm our theoretical results.
We consider the second-order rational difference equation xn+1=γ+δxnxn−12,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {x_{n+1}=\gamma +\delta \frac{x_{n}}{x^{2}_{n-1}}}, $$\end{document} where γ, δ are positive real numbers and the initial conditions x−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x_{-1}$\end{document} and x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x_{0}$\end{document} are positive real numbers. Boundedness along with global attractivity and Neimark–Sacker bifurcation results are established. Furthermore, we give an asymptotic approximation of the invariant curve near the equilibrium point.
AbstractWe consider the second-order rational difference equation xn+1=γ+δxnxn−12,$$ {x_{n+1}=\gamma +\delta \frac{x_{n}}{x^{2}_{n-1}}}, $$ where γ, δ are positive real numbers and the initial conditions x−1$x_{-1}$ and x0$x_{0}$ are positive real numbers. Boundedness along with global attractivity and Neimark–Sacker bifurcation results are established. Furthermore, we give an asymptotic approximation of the invariant curve near the equilibrium point.
Abstract A certain class of a host–parasitoid models, where some host are completely free from parasitism within a spatial refuge is studied. In this paper, we assume that a constant portion of host population may find a refuge and be safe from attack by parasitoids. We investigate the effect of the presence of refuge on the local stability and bifurcation of models. We give the reduction to the normal form and computation of the coefficients of the Neimark–Sacker bifurcation and the asymptotic approximation of the invariant curve. Then we apply theory to the three well-known host–parasitoid models, but now with refuge effect. In one of these models Chenciner bifurcation occurs. By using package Mathematica, we plot bifurcation diagrams, trajectories and the regions of stability and instability for each of these models.
In this paper, we consider the dynamics of a certain class of host-parasitoid models, where some hosts are completely free from parasitism either with or without a spatial refuge and the host population is governed by the Beverton–Holt equation. We assume that, in each generation, a constant portion of the host population may find a refuge and be safe from the attack by parasitoids. We derive some criteria for the Neimark–Sacker bifurcation. Then, we apply the developed theory to the three well-known cases: [Formula: see text] model, Hassel and Varley model, and parasitoid–parasitoid model. Intensive numerical calculations suggest that the last two models undergo a supercritical Neimark–Sacker bifurcation.
By using KAM theory we investigate the stability of equilibrium points of the class of difference equations of the form xn+1=f(xn)xn−1,n=0,1,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x_{n+1}=\frac{f(x _{n})}{x_{n-1}}, n=0,1,\ldots $\end{document} , f:(0,+∞)→(0,+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f:(0,+\infty )\to (0,+\infty )$\end{document}, f is sufficiently smooth and the initial conditions are x−1,x0∈(0,+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x_{-1}, x _{0}\in (0,+\infty )$\end{document}. We establish when an elliptic fixed point of the associated map is non-resonant and non-degenerate, and we compute the first twist coefficient α1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha _{1}$\end{document}. Then we apply the results to several difference equations.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više