Logo
User Name

Mehmed Nurkanović

Društvene mreže:

This paper investigates an autonomous discrete-time glycolytic oscillator model with a unique positive equilibrium point which exhibits chaos in the sense of Li–Yorke in a certain region of the parameters. We use Marotto’s theorem to prove the existence of chaos by finding a snap-back repeller. The illustration of the results is presented by using numerical simulations.

M. Nurkanović, Mirsad Trumić

In teaching mathematics to first-year undergraduates, and thus in the appropriate calculus textbooks, the task of calculating an integral that satisfies a specific first-order or second-order recurrence relation often appears. These relations are obtained mainly by applying the method of integration by parts. Calculating such integrals is usually tedious, especially for an integer n > 2, time-consuming, and presents the possibility of making a large number of errors when computing involves multiple iterative steps. In [1], it is shown that in two cases (Theorems 2.1. and 2.3), the process of calculating integrals satisfying first-order recurrence relations can be performed quickly using easily memorised closed-form formulas for corresponding primitive functions. The question can rightly be asked whether there is a faster way to calculate other integrals of this type. In this paper, our goal is to give an affirmative answer to such a question, though without convering all situations. Since each recurrence relation is equivalent to a difference equation of the same order, the calculation of integrals mentioned above can be reduced to solving the corresponding difference equations. Since every first-order or second-order linear difference equation is solvable, it follows that for every integral which can be reduced to a first- order or second-order recurrence formula, it is possible to find corresponding primitive functions directly. Sometimes such a procedure is much faster than iterative solving of the integral. Closed-form formulas for the integrals discussed in the following sections are not unknown (see [2]). However, here our goal is to present the idea of computing indefinite integrals using difference equations. We will discuss it in more detail in Section 2. In Section 3, we discuss the application of the results obtained to calculate several improper integrals and the application of some of them in different sciences. An exciting example of such an application is the integral , which in the case n = 1 is used in the kinetic theory of gases, particularly in the Maxwell-Boltzmann distribution of gas molecules by energies (see Remark 4). Also, we compare the formulas obtained by the method of difference equations with the formulas obtained using Wolfram Alpha software (see Remark 5).

M. Kulenović, M. Nurkanović, Z. Nurkanović, Susan Trolle

This paper investigates the dynamics of non-autonomous competitive systems of difference equations with asymptotically constant coefficients. We are mainly interested in global attractivity results for such systems and the application of such results to the evolutionary population of competition models of two species.

We investigate the local and global character of the unique equilibrium point and boundedness of the solutions of certain homogeneous fractional difference equation with quadratic terms. Also, we consider Neimark–Sacker bifurcations and give the asymptotic approximation of the invariant curve.

We investigate the local and global character of the unique equilibrium point of certain homogeneous fractional difference equation with quadratic terms. The existence of the period-two solution in one special case is given. Also, in this case the local and global stability of the minimal period-two solution for some special values of the parameters are given. AMS Subject Classifications: 39A10, 39A20, 39A23, 39A30.

M. Kulenović, S. Moranjkić, M. Nurkanović, Z. Nurkanović

<jats:p>We investigate the global asymptotic stability of the following second order rational difference equation of the form <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo>+</mml:mo><mml:mn mathvariant="normal">1</mml:mn></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mfenced separators="|"><mml:mrow><mml:mi>B</mml:mi><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo>-</mml:mo><mml:mn mathvariant="normal">1</mml:mn></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:mi>F</mml:mi></mml:mrow></mml:mfenced></mml:mrow><mml:mo>/</mml:mo><mml:mrow><mml:mfenced separators="|"><mml:mrow><mml:mi>b</mml:mi><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo>-</mml:mo><mml:mn mathvariant="normal">1</mml:mn></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:mi>c</mml:mi><mml:msubsup><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo>-</mml:mo><mml:mn mathvariant="normal">1</mml:mn></mml:mrow><mml:mrow><mml:mn mathvariant="normal">2</mml:mn></mml:mrow></mml:msubsup></mml:mrow></mml:mfenced></mml:mrow></mml:mrow><mml:mo>,</mml:mo><mml:mo> </mml:mo><mml:mo> </mml:mo><mml:mi>n</mml:mi><mml:mo>=</mml:mo><mml:mn mathvariant="normal">0,1</mml:mn><mml:mo>,</mml:mo><mml:mo>…</mml:mo><mml:mo>,</mml:mo></mml:math> where the parameters <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mrow><mml:mi>B</mml:mi></mml:mrow></mml:math>, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mrow><mml:mi>F</mml:mi></mml:mrow></mml:math>, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mrow><mml:mi>b</mml:mi></mml:mrow></mml:math>, and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><mml:mrow><mml:mi>c</mml:mi></mml:mrow></mml:math> and initial conditions <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M6"><mml:mrow><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mo>-</mml:mo><mml:mn mathvariant="normal">1</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M7"><mml:mrow><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> are positive real numbers. The map associated with this equation is always decreasing in the second variable and can be either increasing or decreasing in the first variable depending on the parametric space. In some cases, we prove that local asymptotic stability of the unique equilibrium point implies global asymptotic stability. Also, we show that considered equation exhibits the Naimark-Sacker bifurcation resulting in the existence of the locally stable periodic solution of unknown period.</jats:p>

By using the Kolmogorov–Arnold–Moser theory, we investigate the stability of the equilibrium solution of the difference equation un+1=A+Bun+un2(1+Dun)un−1,n=0,1,2,… where A,B,D > 0,u−1,u0>0. We also use the symmetries to find effectively the periodic solutions with feasible periods. Copyright © 2016 John Wiley & Sons, Ltd.

...
...
...

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više