Logo
User Name

Adaleta Durmić-Pašić

Društvene mreže:

Introduction The strategic utilization of plant growth-promoting (PGP) rhizospheric bacteria is a sustainable approach to mitigating the negative effects of anthropogenic activities and excessive nickel (Ni) accumulation in plants. Given that the specific effects of symbiotic interactions depend on the direct relationship between the plant species, bacterial strain, and heavy metals (HMs), this study aimed to investigate the effects of Paraburkholderia phytofirmans PsJN seed priming on Ni tolerance in adult Micro-Tom tomato plants (Solanum lycopersicum L.). Methods Sterilized Micro-Tom seeds were bioprimed with P. phytofirmans PsJN for 24 hours and then sown into the soil. Non-primed, imbibed seeds were used as a control. After 10 days, the seedlings were transferred to a Hoagland nutrient solution. Chronic (10 μM Ni) and acute (50 μM Ni) stress conditions were induced by supplementing the Hoagland solution with Ni salt. The experiment lasted approximately 75 days, covering the complete life cycle of the plants. Various physiological and biochemical parameters were analyzed. Results Significant differences (p < 0.05) were observed between non-primed and bioprimed tomato plants in terms of fruit yield. Bioprimed tomatoes exhibited higher resilience to Ni stress, particularly under acute stress conditions. Non-primed tomatoes treated with 50 μM Ni showed statistically lower concentrations of chlorophyll a and total chlorophylls compared to bioprimed tomatoes. Moreover, proline content was generally lower and more stable in bioprimed plants, indicating reduced oxidative stress.The activity of antioxidant enzymes exhibited distinct patterns between nonprimed and bioprimed tomatoes. Conclusion The findings suggest that biopriming with P. phytofirmans PsJN enhances Micro-Tom tomato resilience and growth under Ni stress. This technique appears to mitigate Ni-induced stress effects, particularly at higher Ni concentrations, making it a promising strategy for improving tomato performance in Ni-contaminated environments. Future studies should explore the underlying molecular mechanisms and field applications of this biopriming approach.

Jasna Hanjalić Kurtović, Belma Kalamujić Stroil, S. Siljak-Yakovlev, N. Pojskić, A. Durmić-Pašić, Alma Hajrudinović-Bogunić, Lejla Lasić, Lejla Ušanović, F. Bogunić

Polyploidy is a powerful mechanism driving genetic, physiological, and phenotypic changes among cytotypes of the same species across both large and small geographic scales. These changes can significantly shape population structure and increase the evolutionary and adaptation potential of cytotypes. Alyssum moellendorfianum, an edaphic steno-endemic species with a narrow distribution in the Balkan Peninsula, serves as an intriguing case study. We conducted a comprehensive analysis of genetic diversity and population structure across the species’ range, employing an array of genetic techniques (nuclear microsatellites, amplified fragment length polymorphisms, and plastid DNA sequences), flow cytometry (FCM), morphometry, and pollen analysis. The study reveals two genetic lineages: spatially distributed diploid and tetraploid cytotypes. Clear divergence between diploids and tetraploids was shown by AFLP, while plastid DNA sequences confirmed private haplotypes in each of the studied populations. Higher genetic diversity and allelic richness following the north-south pattern were documented in tetraploids compared to diploids, as indicated by nuclear microsatellites. Morphometric analysis via principal component analysis (PCA) and canonical discriminant analysis (CDA) did not reveal any divergence between diploid and tetraploid cytotypes. Nonetheless, a distinction in pollen size was clearly observed. The results suggest an autopolyploid origin of tetraploids from diploid ancestors. Despite the population fragmentation in a very small geographic range, these populations harbour high genetic diversity, which would allow them to remain stable if natural processes remain undisturbed.

Mujo Hasanović, Emir Hrelja, Anesa Ahatović Hajro, Senad Murtić, A. Durmić-Pašić

Abstract Serpentine soils are characterized as a unique environment with low nutrient availability and high heavy metal concentrations, often hostile to many plant species. Even though these unfavorable conditions hinder the growth of various plants, particular vegetation with different adaptive mechanisms thrives undisturbed. One of the main contributors to serpentine adaptation represents serpentine bacteria with plant growth-promoting properties that assemble delicate interactions with serpentine plants. Robinia pseudoacacia L. is an invasive but adaptive species with phytoremediation potential and demonstrates extraordinary success in this environment. To explore more in-depth the role of plant growth-promoting serpentine bacteria, we isolated them and tested their various plant growth-promoting traits both from the rhizosphere and roots of R. pseudoacacia. Based on the demonstrated plant growth-promoting traits such as siderophore production, phosphate solubilization, nitrogen fixation, indole-3-acetic acid production, and ACC deaminase production, we sequenced overall 25 isolates, 14 from the rhizosphere and 11 from the roots. Although more efficient in exhibiting plant growthpromoting traits, rhizospheric bacteria showed a low rate of diversity in comparison to endophytic bacteria. The majority of the isolates from the rhizosphere belong to Pseudomonas, while isolates from the roots exhibited higher diversity with genera Pseudomonas, Bacillus, Staphylococcus, Lysinibacillus and Brevibacterium/Peribacillus/Bacillus. The capacity of the described bacteria to produce siderophores, solubilize phosphate, and fix nitrogen highlights their central role in enhancing nutrient availability and facilitating R. pseudoacacia adaptation to serpentine soils. The findings highlight the potential significance of serpentine bacteria, particularly Pseudomonas, in contributing to the resilience and growth of R. pseudoacacia in serpentine environments.

Many heavy metals (HMs) are essential micronutrients for the growth and development of plants. However, human activities such as mining, smelting, waste disposal, and industrial processes have led to toxic levels of HMs in soil. Fortunately, many plant species have developed incredible adaptive mechanisms to survive and thrive in such harsh environments. As a widespread and ruderal species, Geranium robertianum L. inhabits versatile soil types, both polluted and unpolluted. Considering the ubiquity of G . robertianum , the study aimed to determine whether geographically distant populations can tolerate HMs. We collected soil and plant samples from serpentine, an anthropogenic heavy metal contaminated, and a non-metalliferous site to study the physiological state of G. robertianum . HMs in soil and plants were determined using flame atomic absorption spectrometry. Spectrophotometric methods were used to measure the total content of chlorophylls a and b, total phenolics, phenolic acids, flavonoids, and proline. Principal component analysis (PCA) was used to investigate the potential correlation between HMs concentrations gathered from various soil types and plant samples and biochemical data acquired for plant material. A statistically significant difference was observed for all localities regarding secondary metabolite parameters. A positive correlation between Ni and Zn in soil and Ni and Zn in plant matter was observed ( p <0.0005) indicating higher absorption. Regardless of high concentrations of heavy metals in investigated soils, G. robertianum displayed resilience and was capable of thriving. These results may be ascribed to several protective mechanisms that allow G. robertianum to express normal growth and development and act as a pioneer species.

Bosnia and Herzegovina (B&H) is among the European countries with the highest rate of air pollution-related death cases and the poorest air quality. The main causes are solid fuel consumption, traffic, and the poorly developed or implemented air pollution reduction policies. In addition, the city of Sarajevo, the capital of B&H, suffers temperature inversion episodes in autumn/winter months, which sustain air pollution. Human biomonitoring studies may be confounded by the lifestyle of subjects or possible metabolic alterations. Therefore, this study aimed to evaluate Ligustrum vulgare L. as a model for air pollution monitoring by measuring DNA damage at one rural and two urban sites. DNA damage was measured as tail intensity (TI) in L. vulgare leaves, considering seasonal, sampling period, leaf position and staging, and spatial (urban versus rural) variation. Effects of COVID-19 lockdown on TI were assessed by periodical monitoring at one of the selected sites, while in-house grown L. vulgare plants were used to test differences between outdoor and indoor air pollution effects for the same sampling period. Significantly higher TI was generally observed in leaves collected in Campus in December 2020 and 2021 compared with March (P < 0.0001). Outer and adult leaves showed higher TI values, except for the rural site where no differences for these categories were found. Leaves collected in the proximity of the intensive traffic showed significantly higher TI values (P < 0.001), regardless of the sampling period and the stage of growth. In regards to the COVID-19 lockdown, higher TI (P < 0.001) was registered in December 2020, after the lockdown period, than in periods before COVID-19 outbreak or immediately after the lockdown in 2020. This also reflects mild air pollution conditions in summer. TI values for the in-house grown leaves were significantly lower compared to those in situ. Results showed that L. vulgare may present a consistent model for the air pollution biomonitoring but further studies are needed to establish the best association between L. vulgare physiology, air quality data, and air pollution effects.

...
...
...

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više