Logo
User Name

Fahrudin Mehmedović

Društvene mreže:

Intelligent manufacturing plays an important role in Industry 4.0. Key technologies such as artificial intelligence (AI), big data analytics (BDA), the internet of things (IoT), cyber-physical systems (CPSs), and cloud computing enable intelligent manufacturing systems (IMS). Artificial intelligence (AI) plays an essential role in IMS by providing typical features such as learning, reasoning, acting, modeling, intelligent interconnecting, and intelligent decision making. Artificial intelligence's impact on manufacturing is involved in Industry 4.0 through big data analytics, predictive maintenance, data-driven system modeling, control and optimization, human-robot collaboration, and smart machine communication. The recent advances in machine and deep learning algorithms combined with powerful computational hardware have opened new possibilities for technological progress in manufacturing, which led to improving and optimizing any business model.

Improvements in energy efficiency in Industry 4.0 is the main imperative in manufacturing. An important challenge in many fields of complex industrial processes is energy-efficient optimization. The basic idea of the energy efficiency optimization algorithm is to find the optimal assigned value of process parameters to achieve the lowest energy cost and the best working conditions. Applying the multi-objective approach for solving real industry optimization problems is a challenging task. Therefore, this chapter provides an overview of the most significant issues in multi-objective optimization problem. Improving energy efficiency with the multi-objective optimization has opened new opportunities for technological progress in Industry 4.0.

: Autonomous cooperative driving systems require the integration of research activities in the field of embedded systems, robotics, communication, control and artificial intelligence in order to create a secure and intelligent autonomous drivers behaviour patterns in the traffic. Beside autonomous vehicle management, an important research focus is on the cooperation behaviour management. In this paper, we propose hybrid automaton modelling to emulate flexible vehicle Platoon and vehicles cooperation interactions. We introduce novel coding function for Platoon cooperation behaviour profile generation in time, which depends of vehicles number in Platoon and behaviour types. As the behaviour prediction of transportation systems, one of the primarily used methods of artificial intelligence in Intelligent Transport Systems, we propose an approach towards NARX neural network prediction of Platoon cooperation behaviour profile. With incorporation of Platoon manoeuvres dynamic prediction, which is capable of analysing traffic behaviour, this approach would be useful for secure implementation of real autonomous vehicles cooperation.

ABSTRACT The thermal power plant systems are one of the most complex dynamical systems which must function properly all the time with least amount of costs. More sophisticated monitoring systems with early detection of failures and abnormal behaviour of the power plants are required. The detection of anomalies in historical data using machine learning techniques can lead to system health monitoring. The goal of the research is to build a neural network-based data-driven model that will be used for anomaly detection in selected sections of thermal power plant. Selected sections are Steam Superheaters and Steam Drum. Inputs for neural networks are some of the most important process variables of these sections. All of the inputs are observable from installed monitoring system of thermal power plant, and their anomaly/normal behaviour is recognized by operator's experiences. The results of applying three different types of neural networks (MLP, recurrent and probabilistic) to solve the problem of anomaly detection confirm that neural network-based data-driven modelling has potential to be integrated in real-time health monitoring system of thermal power plant.

— Anomaly detection refers to the problem of finding patterns in data that do not conform to expected behavior. It is very important to timely detect parameter anomalies in real-world running thermal power plant system, which is one of the most complex dynamical systems. Artificial neural networks are one of anomaly detection techniques. This paper presents the Elman recurrent neural network as method to solve the problem of parameter anomaly detection in selected sections of thermal power plant (steam superheaters and steam drum). Inputs for neural networks are some of the most important process variables of these sections. In addition to the implementation of this network for anomaly detection, the effect of key parameter change on anomaly detection results is also shown. Results confirm that recurrent neural network is good approach for anomaly detection problem, especially in real-time industrial applications.

Abstract Intelligent Transport Systems (ITS) fall in the framework of cyberphysical systems due to the interaction between physical systems (vehicles) and distributed information acquisition and dissemination infrastructure. With the accelerated development of wireless Vehicle-to-Vehicle (V2V) and Vehicle-to Infrastructure (V2I) communications, the integrated acquiring and processing of information is becoming feasible at an increasingly large scale. Accurate prediction of the traffic information in real time, such as the speed, flow, density has important applications in many areas of Intelligent Transport systems. It is a challenging problem due to the dynamic changes of the traffic states caused by many uncertain factors along a travelling route. In this paper we present a V2V based Speed Profile Prediction approach (V2VSPP) that was developed using neural network learning to predict the speed of selected agents based on the received signal strength values of communications between pairs of vehicles. The V2VSPP was trained and evaluated by using traffic data provided by the Australian Centre for Field Robotics. It contains vehicle state information, vehicle-to-vehicle communications and road maps with high temporal resolution for large numbers of interacting vehicles over a long time period. The experimental results show that the proposed approach (V2VSPP) has the capability of providing accurate predictions of speed profiles in multi-vehicle trajectories setup.

...
...
...

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više