Generative AI approaches such as ChatGPT are very popular and can be used for multiple purposes. This paper explores the possibility of using ChatGPT-4o for analysing visual information about 2D objects on provided images and returning annotated image results to the user. The achieved results indicate that ChatGPT can be used for the analysis of visual data and detect approximate values of desired parameters, however its generative capabilities are lacking and often unusable.
Smart wearable devices often contain heart rate monitoring capabilities. This paper presents an experimental study that compares the accuracy of smart watches (Xiaomi Amazfit Bip 3 and GEEKIN X10) to microcontroller-based systems that use raw sensors (HW-827 and MAX30102). The achieved results indicate that the accuracy of raw sensors is lower compared to smart watches and that the level of inaccuracy depends on the level of physical activity of the test subjects.
Modern IoT devices used for remote health monitoring use basic parameters such as heart rate, skin temperature and oxygen saturation. Maximum heart rate is an important parameter used for calculating heart rate zones that is helpful in diagnosis and prevention of cardiovascular diseases. This paper presents an information system that contains an IoT subsystem for heart rate measurement, and a web-server subsystem for monitoring by doctors that includes heart rate zone monitoring.
Professional football players often need legal help in managing disputes with football clubs. The Professional Football Players Syndicate of Bosnia and Herzegovina is an organization founded with this purpose. Due to an increasing need for legal help and a large number of cases, their legal associates need systematic management of data. This work presents the first information system entirely intended for the usage by sports law professionals. It contains a desktop application where legal disputes are shown in the form of an organized dispute table. Real-time information about football players is acquired by using the TransferMarkt web API. The system was successfully used for two years, resulting in 103 documented cases involving 87 players and 31 clubs. As a result, 69.90% of disputes were archived and 43.69% of disputes resulted in agreements, indicating that the productivity of legal associates and the mediator role of the Syndicate were improved.
Procedural modeling is used to generate virtual content in organized layouts of exterior and interior elements. There is a large number of existing layout generation methods, and newer approaches propose the generation of multiple layout types within the same generation session. This introduces additional constraints when manually created layout elements need to be combined with the automatically generated content. Existing approaches are either designed to work with existing elements for a single layout type, or require a high amount of manual work for adding existing elements within multiple layouts. This paper presents a method that enables the application of existing subdivision methods on multiple layout types by inserting existing content into the generation result. This method can generate test cases by creating variations of partially generated layouts for procedural modeling methods that can work with existing content.
The visual layout has an enormous influence on human perception and is a subject of many studies, including research on web page similarity comparison. Structure-based approaches use the possibility of direct access to HTML content, whereas visual methods have widespread usage due to the ability to analyze image screenshots of entire web pages. A solution described within this paper will focus on extracting web page layout in forms needed by both above-mentioned approaches.
Subdivision of 2D polygons is the basis of many computational geometry algorithms and procedural modeling methods. Existing tools for space subdivision often require the assistance of users and cannot perform subdivision on all types of shapes (rectangular, axis-aligned, convex, and irregular). In this work, an open-source graphical desktop tool for drawing and automatic subdivision of arbitrary 2D polygons is introduced. An algorithm for subdivision of all shape types was developed. The algorithm is based on the usage of polygon bounding boxes, intersection edges and detection of polygons from newly formed edges. A dataset of 60 examples of all shape types was collected and successfully drawn by using the tool. Iterative subdivision was performed on all examples. Shape simplification was fully successful only for axis-aligned shapes. Partial simplification with leftover elements taking up less than 5% of overall polygon area was successful after 5 iterations for axis-aligned, and 10 iterations for convex and irregular shapes on average. This indicates that the tool and subdivision algorithm can be used for simplification of complex shape types with arbitrarily small leftover element area.
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više