Logo

Publikacije (18003)

Nazad
P. Richardson, B. Barlogie, J. Berenson, S. Singhal, S. Jagannath, D. Irwin, S. Rajkumar, G. Srkalović et al.

BACKGROUND Bortezomib, a boronic acid dipeptide, is a novel proteasome inhibitor that has been shown in preclinical and phase 1 studies to have antimyeloma activity. METHODS In this multicenter, open-label, nonrandomized, phase 2 trial, we enrolled 202 patients with relapsed myeloma that was refractory to the therapy they had received most recently. Patients received 1.3 mg of bortezomib per square meter of body-surface area twice weekly for 2 weeks, followed by 1 week without treatment, for up to eight cycles (24 weeks). In patients with a suboptimal response, oral dexamethasone (20 mg daily, on the day of and the day after bortezomib administration) was added to the regimen. The response was evaluated according to the criteria of the European Group for Blood and Marrow Transplantation and confirmed by an independent review committee. RESULTS Of 193 patients who could be evaluated, 92 percent had been treated with three or more of the major classes of agents for myeloma, and in 91 percent, the myeloma was refractory to the therapy received most recently. The rate of response to bortezomib was 35 percent, and those with a response included 7 patients in whom myeloma protein became undetectable and 12 in whom myeloma protein was detectable only by immunofixation. The median overall survival was 16 months, with a median duration of response of 12 months. Grade 3 adverse events included thrombocytopenia (in 28 percent of patients), fatigue (in 12 percent), peripheral neuropathy (in 12 percent), and neutropenia (in 11 percent). Grade 4 events occurred in 14 percent of patients. CONCLUSIONS Bortezomib, a member of a new class of anticancer drugs, is active in patients with relapsed multiple myeloma that is refractory to conventional chemotherapy.

M. Jamal-Hanjani, G. Wilson, N. Mcgranahan, N. Birkbak, T. Watkins, S. Veeriah, S. Shafi, Diana H. Johnson et al.

BACKGROUND Among patients with non‐small‐cell lung cancer (NSCLC), data on intratumor heterogeneity and cancer genome evolution have been limited to small retrospective cohorts. We wanted to prospectively investigate intratumor heterogeneity in relation to clinical outcome and to determine the clonal nature of driver events and evolutionary processes in early‐stage NSCLC. METHODS In this prospective cohort study, we performed multiregion whole‐exome sequencing on 100 early‐stage NSCLC tumors that had been resected before systemic therapy. We sequenced and analyzed 327 tumor regions to define evolutionary histories, obtain a census of clonal and subclonal events, and assess the relationship between intratumor heterogeneity and recurrence‐free survival. RESULTS We observed widespread intratumor heterogeneity for both somatic copy‐number alterations and mutations. Driver mutations in EGFR, MET, BRAF, and TP53 were almost always clonal. However, heterogeneous driver alterations that occurred later in evolution were found in more than 75% of the tumors and were common in PIK3CA and NF1 and in genes that are involved in chromatin modification and DNA damage response and repair. Genome doubling and ongoing dynamic chromosomal instability were associated with intratumor heterogeneity and resulted in parallel evolution of driver somatic copy‐number alterations, including amplifications in CDK4, FOXA1, and BCL11A. Elevated copy‐number heterogeneity was associated with an increased risk of recurrence or death (hazard ratio, 4.9; P=4.4×10‐4), which remained significant in multivariate analysis. CONCLUSIONS Intratumor heterogeneity mediated through chromosome instability was associated with an increased risk of recurrence or death, a finding that supports the potential value of chromosome instability as a prognostic predictor. (Funded by Cancer Research UK and others; TRACERx ClinicalTrials.gov number, NCT01888601.)

P. Riederer, E. Sofić, W. Rausch, B. Schmidt, G. Reynolds, K. Jellinger, M. Youdim

Abstract: The regional distributions of iron, copper, zinc, magnesium, and calcium in parkinsonian brains were compared with those of matched controls. In mild Parkinson's disease (PD), there were no significant differences in the content of total iron between the two groups, whereas there was a significant increase in total iron and iron (III) in substantia nigra of severely affected patients. Although marked regional distributions of iron, magnesium, and calcium were present, there were no changes in magnesium, calcium, and copper in various brain areas of PD. The most notable finding was a shift in the iron (II)/iron (III) ratio in favor of iron (III) in substantia nigra and a significant increase in the iron (III)‐binding protein, ferritin. A significantly lower glutathione content was present in pooled samples of putamen, globus pallidus, substantia nigra, nucleus basalis of Meynert, amygdaloid nucleus, and frontal cortex of PD brains with severe damage to substantia nigra, whereas no significant changes were observed in clinicopathologically mild forms of PD. In all these regions, except the amygdaloid nucleus, ascorbic acid was not decreased. Reduced glutathione and the shift of the iron (II)/iron (III) ratio in favor of iron (III) suggest that these changes might contribute to pathophysiological processes underlying PD.

G. Cao, E. Sofić, R. Prior

Previously, some fruits were shown to contain high antioxidant activities. In this paper, we report the antioxidant activities of 22 common vegetables, one green tea, and one black tea measured using the automated oxygen radical absorbance capacity assay with three different reactive species:  a peroxyl radical generator, a hydroxyl radical generator, and Cu2+, a transition metal. Based on the fresh weight of the vegetable, garlic had the highest antioxidant activity (μmol of Trolox equiv/g) against peroxyl radicals (19.4) followed by kale (17.7), spinach (12.6), Brussels sprouts, alfalfa sprouts, broccoli flowers, beets, red bell pepper, onion, corn, eggplant (9.8−3.9), cauliflower, potato, sweet potato, cabbage, leaf lettuce, string bean, carrot, yellow squash, iceberg lettuce, celery, and cucumber (3.8−0.5); kale had the highest antioxidant activity against hydroxyl radicals followed by Brussels sprouts, alfalfa sprouts, beets, spinach, broccoli flowers, and the others. The green and black teas had muc...

R. Prior, G. Cao, Anda Martin, E. Sofić, J. McEwen, C. O'brien, N. Lischner, M. Ehlenfeldt et al.

Different cultivars of four Vaccinium species [Vaccinium corymbosum L (Highbush), Vaccinium ashei Reade (Rabbiteye), Vaccinium angustifolium (Lowbush), and Vaccinium myrtillus L (Bilberry)] were analyzed for total phenolics, total anthocyanins, and antioxidant capacity (oxygen radical absorbance capacity, ORAC). The total antioxidant capacity of different berries studied ranged from a low of 13.9 to 45.9 μmol Trolox equivalents (TE)/g of fresh berry (63.2−282.3 μmol TE/g of dry matter) in different species and cultivars of Vaccinium. Brightwell and Tifblue cultivars of rabbiteye blueberries were harvested at 2 times, 49 days apart. Increased maturity at harvest increased the ORAC, the anthocyanin, and the total phenolic content. The growing location (Oregon vs Michigan vs New Jersey) did not affect ORAC, anthocyanin or total phenolic content of the cv. Jersey of highbush blueberries. A linear relationship existed between ORAC and anthocyanin (rxy = 0.77) or total phenolic (rxy = 0.92) content. In general,...

A. Zhernakova, A. Kurilshikov, M. Bonder, E. Tigchelaar, M. Schirmer, T. Vatanen, Z. Mujagic, A. V. Vila et al.

“Normal” for the gut microbiota For the benefit of future clinical studies, it is critical to establish what constitutes a “normal” gut microbiome, if it exists at all. Through fecal samples and questionnaires, Falony et al. and Zhernakova et al. targeted general populations in Belgium and the Netherlands, respectively. Gut microbiota composition correlated with a range of factors including diet, use of medication, red blood cell counts, fecal chromogranin A, and stool consistency. The data give some hints for possible biomarkers of normal gut communities. Science, this issue pp. 560 and 565 Two large-scale studies in Western Europe establish environment-diet-microbe-host interactions. Deep sequencing of the gut microbiomes of 1135 participants from a Dutch population-based cohort shows relations between the microbiome and 126 exogenous and intrinsic host factors, including 31 intrinsic factors, 12 diseases, 19 drug groups, 4 smoking categories, and 60 dietary factors. These factors collectively explain 18.7% of the variation seen in the interindividual distance of microbial composition. We could associate 110 factors to 125 species and observed that fecal chromogranin A (CgA), a protein secreted by enteroendocrine cells, was exclusively associated with 61 microbial species whose abundance collectively accounted for 53% of microbial composition. Low CgA concentrations were seen in individuals with a more diverse microbiome. These results are an important step toward a better understanding of environment-diet-microbe-host interactions.

C. Abbosh, N. Birkbak, G. Wilson, M. Jamal-Hanjani, T. Constantin, R. Salari, J. Le Quesne, D. Moore et al.

C. Abbosh, N. Birkbak, G. Wilson, M. Jamal-Hanjani, T. Constantin, R. Salari, J. Le Quesne, D. Moore et al.

K. Michailidou, P. Hall, A. González-Neira, M. Ghoussaini, J. Dennis, R. Milne, M. Schmidt, J. Chang-Claude et al.

K. Michailidou, S. Lindström, J. Dennis, J. Beesley, Shirley Hui, S. Kar, Audrey Lemaçon, P. Soucy et al.

Klaus Maier-Hein, P. Neher, Jean-Christophe Houde, Marc-Alexandre Côté, E. Garyfallidis, J. Zhong, Maxime Chamberland, F. Yeh et al.

N. Mcgranahan, R. Rosenthal, C. Hiley, Andrew Rowan, T. Watkins, G. Wilson, Nicolai J. Birkbak, S. Veeriah et al.

F. Imhann, M. Bonder, A. Vich Vila, Jingyuan Fu, Z. Mujagic, L. Vork, E. Tigchelaar, S. Jankipersadsing et al.

Background and aims Proton pump inhibitors (PPIs) are among the top 10 most widely used drugs in the world. PPI use has been associated with an increased risk of enteric infections, most notably Clostridium difficile. The gut microbiome plays an important role in enteric infections, by resisting or promoting colonisation by pathogens. In this study, we investigated the influence of PPI use on the gut microbiome. Methods The gut microbiome composition of 1815 individuals, spanning three cohorts, was assessed by tag sequencing of the 16S rRNA gene. The difference in microbiota composition in PPI users versus non-users was analysed separately in each cohort, followed by a meta-analysis. Results 211 of the participants were using PPIs at the moment of stool sampling. PPI use is associated with a significant decrease in Shannon's diversity and with changes in 20% of the bacterial taxa (false discovery rate <0.05). Multiple oral bacteria were over-represented in the faecal microbiome of PPI-users, including the genus Rothia (p=9.8×10−38). In PPI users we observed a significant increase in bacteria: genera Enterococcus, Streptococcus, Staphylococcus and the potentially pathogenic species Escherichia coli. Conclusions The differences between PPI users and non-users observed in this study are consistently associated with changes towards a less healthy gut microbiome. These differences are in line with known changes that predispose to C. difficile infections and can potentially explain the increased risk of enteric infections in PPI users. On a population level, the effects of PPI are more prominent than the effects of antibiotics or other commonly used drugs.

Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više