Logo

Publikacije (217)

Nazad
Bojan Dimitrijević, T. Šubaranović, Željko Stević, M. Kchaou, Faris Alqurashi, Marko Subotić

The expansion of the open-pit exploitation of mineral raw materials, and especially the energy resources of fossil fuels, makes open-pit coal mines spatially dominant objects of large mining basins. Exploitation activities are accompanied by negative ecological impacts on the environment, which requires the integral planning, revitalization, reclamation, and rehabilitation of the disturbed area for human use in the post-exploitation period. The post-exploitation remediation and rehabilitation of open-pit mining areas and disposal sites, i.e., space disturbed by mining activities and accompanying facilities, are complex synthetic multidisciplinary multiphase engineering project tasks. In this paper, a hybrid fuzzy MCDM model (Multiple-Criteria Decision-Making) was developed for the selection of a reclamation solution for the Tamnava-West Field open-pit mine. IMF SWARA (Improved Fuzzy Stepwise Weight Assessment Ratio Analysis) was applied to define the weights of 12 criteria of different structures used in the evaluation of reclamation solutions. The Fuzzy ROV (Range of Value) method was applied to select the reclamation solution from a total of 11 solutions previously obtained using a process approach. The results of the hybrid IMF SWARA—Fuzzy ROV model show that forestry is the best solution for the Tamnava-West Field open-pit mine. After the results had been obtained, verification analyses of the proposed model were performed and the best stable proposed reclamation solution was determined.

Rade Petrović, Ratko Đurčić, Željko Stević

The selection of handling equipment represents an important aspect of operational planning in logistics centers and affects the potential increase in work efficiency. Therefore, it is necessary to consider various factors when making decisions regarding the selection of handling equipment. This paper presents the selection of an electric forklift for the needs of loading and handling activities in a closed warehouse of the GTC (Goods Transport Center) Doboj. An MCDM model, consisting of FUCOM (Full Consistency Method) and MARCOS (Measurement of Alternatives and Ranking According to the COmpromise solution) was applied to evaluate electric forklifts. The FUCOM method was used to determine the values of criteria, and the MARCOS method was used to evaluate electric forklifts. After obtaining the results, sensitivity analysis and comparative analysis were performed.

Falak Bharadwaj, Arti Saxena, Rajender Kumar, Raman Kumar, Sandeep Kumar, Željko Stević

ABSTRACT

Željko Stević, Boris Novarlić, M. Kchaou

: The escalating migration from rural to urban locales necessitates an augmented demand for the workforce, local utility services, and mechanization to sustain a balance conducive to public health. This investigation delineates the pivotal role of human resources in executing daily operations required for the upkeep of public green and asphalted areas within Doboj, Bosnia and Herzegovina. It is posited that teamwork and the requisite competencies of the workforce are integral to the utility company’s efficacy and the establishment of conditions requisite for addressing business tasks delineated on weekly and monthly schedules. A cohort of 20 personnel, tasked with the aforementioned responsibilities, was segmented into three categories, predicated upon their skills and capability to fulfil the designated tasks within specified temporal bounds. A novel hybrid Multi-Criteria Decision-Making (MCDM) model, integrating Improved fuzzy Stepwise Weight Assessment Ratio Analysis (IMF SWARA) with Measurement Alternatives and Ranking according to Compromise Solution (MARCOS), was employed to appraise employees across the designated categories. Decision-makers articulated five criteria, which were quantified via the IMF SWARA methodology. Subsequently, the appraisal of worker categories through three discrete models was undertaken employing the MARCOS technique. Outcomes for each category were individually derived and subjected to verification tests, revealing that criterion significance markedly influences human resource ranking. This study underscores the crucial intersection between environmental stewardship and human resource management, advocating for a systematic approach to urban maintenance that leverages MCDM techniques to optimize workforce performance.

D. Andjelković, G. Stojić, Nikola Nikolić, D. K. Das, Marko Subotić, Željko Stević

The capacity of transport infrastructure is one of the very important tasks in transport engineering, which depends mostly on the geometric characteristics of road and headway analysis. In this paper, we have considered 14 road sections and determined their efficiency based on headway analysis. We have developed a novel interval fuzzy-rough-number decision-making model consisting of DEA (data envelopment analysis), IFRN SWARA (interval-valued fuzzy-rough-number stepwise weight-assessment-ratio analysis), and IFRN WASPAS (interval-valued fuzzy-rough-number weighted-aggregate sum–product assessment) methods. The main contribution of this study is a new extension of WASPAS method with interval fuzzy rough numbers. Firstly, the DEA model was applied to determine the efficiency of 14 road sections according to seven input–output parameters. Seven out of the fourteen alternatives showed full efficiency and were implemented further in the model. After that, the IFRN SWARA method was used for the calculation of the final weights, while IFRN WASPAS was applied for ranking seven of the road sections. The results show that two sections are very similar and have almost equal efficiency, while the other results are very stable. According to the results obtained, the best-ranked is a measuring segment of the Ivanjska–Šargovac section, with a road gradient = −5.5%, which has low deviating values of headways according to the measurement classes from PC-PC to AT-PC, which shows balanced and continuous traffic flow. Finally, verification tests such as changing the criteria weights, comparative analysis, changing the λ parameter, and reverse rank analysis have been performed.

Subrata Jana, B.C. Giri, Anirban Sarkar, C. Jana, Željko Stević, Marko Radovanović

Abstract By providing important indicators, financial indices help investors make educated judgements regarding their assets, much like vital sign monitors for the financial markets. The best way for investors to keep up with the market and make strategic adjustments is to keep an eye on these indexes. Researching the most important financial indexes for making educated investing decisions is, thus, quite relevant. Finding the most essential financial indices from an investing standpoint and assigning a weight to each of those indexes are the main goals of this research. A weighted score is derived by combining four financial indices in a Multi-Criteria Decision-Making (MCDM) technique. These objectives are then pursued. Triangular Fuzzy Numbers (TFNs) and the Fuzzy Analytic Hierarchy Process (F-AHP) are used to determine the weights of criteria in this technique. Using these methods together, the research hopes to provide a thorough analysis of the role that different financial indexes have in informing investment choices. This study emphasizes the paramount importance of considering the Price Earning to Growth (PEG) ratio when making investment decisions, followed by the Debt Equity Ratio. Price to Book Value and Dividend Yield, while relevant, carry comparatively less weightage in the overall assessment. Investors are advised to use these insights as a guideline in their financial analysis and decision-making processes.

Mahmut Baydaş, Mustafa Yilmaz, Željko Jović, Željko Stević, S. E. G. Özuyar, A. Özçil

The approach of evaluating the final scores of multi-criteria decision-making (MCDM) methods according to the strength of association with real-life rankings is interesting for comparing MCDM methods. This approach has recently been applied mostly to financial data. In these studies, where it is emphasized that some methods show more stable success, it would be useful to see the results that will emerge by testing the approach on different data structures more comprehensively. Moreover, not only the final MCDM results but also the performance of normalization techniques and data types (fuzzy or crisp), which are components of MCDM, can be compared using the same approach. These components also have the potential to affect MCDM results directly. In this direction, in our study, the economic performances of G-20 (Group of 20) countries, which have different data structures, were calculated over ten different periodic decision matrices. Ten different crisp-based MCDM methods (COPRAS, CODAS, MOORA, TOPSIS, MABAC, VIKOR (S, R, Q), FUCA, and ELECTRE III) with different capabilities were used to better visualize the big picture. The relationships between two different real-life reference anchors and MCDM methods were used as a basis for comparison. The CODAS method develops a high correlation with both anchors in most periods. The most appropriate normalization technique for CODAS was identified using these two anchors. Interestingly, the maximum normalization technique was the most successful among the alternatives (max, min–max, vector, sum, and alternative ranking-based). Moreover, we compared the two main data types by comparing the correlation results of crisp-based and fuzzy-based CODAS. The results were very consistent, and the “Maximum normalization-based fuzzy integrated CODAS procedure” was proposed to decision-makers to measure the economic performance of the countries.

A. Surya, J. Vimala, Nasreen Kausar, Željko Stević, Mohd Asif Shah

A notable advancement in fuzzy set theory is the q-rung linear diophantine fuzzy set. The soft set theory was expanded into the hypersoft set theory. By combining both the q-rung linear diophantine fuzzy set and hypersoft set, this study describes the notion of q-rung linear diophantine fuzzy hypersoft set that can handle multi sub-attributed q-rung linear diophantine fuzzy situations in the real world. Furthermore, some of its algebraic operations such as union, intersection and complement are described in this study. In addtion, the entropy measure of the q-rung linear diophantine fuzzy hypersoft set is established as it is helpful in determining the degree of fuzziness of q-rung linear diophantine fuzzy hypersoft sets. A multi-attribute decision making algorithm based on suggested entropy is presented in this study along with a numerical example of selecting a suitable wastewater treatment technology to demonstrate the effectiveness of the proposed algorithm in real-life situations. A comparative study was undertaken that describes the validity, robustness and superiority of the proposed algorithm and notions by discussing the advantages and drawbacks of existing theories and algorithms. Overall, this study describes a novel fuzzy extension that prevails over the existing ones and contributes to the real world with a valid real-life multi-attribute decision making algorithm that can cover many real-world problems that are unable to be addressed by the existing methodology.

M. Bouraima, Ertuğrul Ayyıldız, Gokhan Ozcelik, N. A. Tengecha, Željko Stević

Practitioners and decision-makers often face difficulties in selecting and prioritizing effective strategies to address challenges to sustainable urban transportation development. Although there has been considerable research conducted on the subject, the Tanzanian context, which is greatly affected by social and environmental problems, has received inadequate attention. Therefore, this study intends to bridge this gap by pinpointing the obstacles to sustainable urban transportation and proposing the most appropriate strategies to tackle them. The study proposes seven strategies and determines five criteria to prioritize them. To accomplish this, the study proposes a novel Fermatean fuzzy-based intelligent decision support model to assess the criteria weights and prioritizes strategies based on the weighted criteria. The study validates the proposed methodology by conducting a sensitivity analysis, which indicates that restricting car use (A5), improving sector coordination (A1), and conducting extensive research on transportation issues (A7) are the top three strategies for promoting sustainable urban transportation. The study’s findings hold significant value in providing urban transportation planners with helpful guidance to develop optimization techniques that can improve transportation systems.

Orhan Emre Elma, Željko Stević, Mahmut Baydaş

Multi-criteria decision analysis (MCDA) applications consist of techniques that enable the decision maker to make clearer decisions in scenarios where there is more than one alternative and criterion. The general approach for sensitivity analysis in MCDA applications implies sensitivity to the weight coefficient. In this study, as an alternative approach, we reinterpret sensitivity by using the statistical relationship between the final ranking produced by an MCDA method and a constant external factor. Thus, we both verify through an anchor and reveal to what extent the change in the weight coefficient changes the external relations of MCDA. The motivation for this study is to propose an alternative sensitivity methodology. On the other hand, brand value is a parameter that contains critical information about the future of the company, which has not integrated into financial performance studies made with MCDAs before. To that end, the financial performance of 31 companies with the highest brand value in Turkey and trading on Borsa Istanbul between 2013 and 2022 was analyzed with seven different MCDA applications via integrating brand value into the criteria for the first time. The study’s findings revealed that the proposed innovative sensitivity tests produced similarly robust results as traditional tests. In addition, brand value has been proved to be an advantageous criterion to be implemented into MCDAs for financial performance problems through the sensitivity analysis made.

Ibrahim Badi, M. Bouraima, Yanjun Qiu, Željko Stević

Priority sequencing criteria are of utmost importance in the determination of the sequence in which jobs are processed at workstations in parallel machine scheduling. The utilization of diverse priority rules can result in varied sequencing arrangements, hence requiring more experimentation to ascertain the optimal rule. Hence, it is imperative to formulate a thorough approach for the selection of the most suitable priority sequencing rule from the standpoint of management decision-making. The objective of this research is to analyze and compare six different priority sequencing rules in the context of parallel machine scheduling. Additionally, a methodology is proposed for the assessment and selection of the most suitable rule. This methodology combines the full consistency method (FUCOM) with the measurement of alternatives and ranking according to compromise solution (MARCOS) method, which are both multi-criteria decision-making techniques. When reviewing and selecting the optimal priority sequencing rule, seven parameters are taken into consideration. The weights of these criteria are computed using the FUCOM method, while the relative proximity values of all priority sequencing rules are derived by the MARCOS method. The data indicate that the priority sequencing rules are prioritized according to their level of importance. The approach outlined in this study is essential for workstation management to make well-informed decisions regarding the choice of the most advantageous priority sequencing rule for parallel machine scheduling.

Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više