<p>Reducing eutrophication requires large financial investments that can be for example used to support catchment stakeholders in building agri-environment mitigation measures. These measures aim at reducing nutrient and sediment losses from agricultural land to recipient waters. In recent years, a large number of studies has looked into their effectiveness and generally show that some measures are successful and others fail to deliver expected improvements in water quality, which is increasingly difficult to communicate to stakeholders expecting immediate results. Particularly, transport mitigation measures that aim at intercepting stream or drainage flow, can have a varying effectiveness. Two measures of the same type and built in a seemingly similar way can have completely opposite impact on water quality, depending on the local catchment properties. In this paper we examine factors controlling effectiveness of mitigation measures looking at their hydrochemical positioning in the catchment in relation to pollution sources including nutrient legacy sources, their hydrochemical behaviour, design, management and stakeholders’ engagement, using examples for transport mitigation measures: constructed wetlands, sedimentation ponds, two-stage ditches and drainage filters. We discuss also typical trade-offs in attainment of different ecosystem services which catchment stakeholders should consider prior to selecting and building the measures, including pollution swapping mechanisms e.g. reducing P-controlled eutrophication but increasing N-controlled eutrophication or reducing eutrophication vs. increasing greenhouse gas emissions. We show also how increasing weather variability and nutrient saturation can lead to further deterioration in water quality despite implementation of measures, making mitigation efforts ineffective under changing climate and in catchments with nutrient legacy sources.</p><p> </p>
The evolution of phosphorus (P) management decision support tools (DSTs) and systems (DSS), in support of food and environmental security has been most strongly affected in developed regions by national strategies (i) to optimize levels of plant available P in agricultural soils, and (ii) to mitigate P runoff to water bodies. In the United States, Western Europe, and New Zealand, combinations of regulatory and voluntary strategies, sometimes backed by economic incentives, have often been driven by reactive legislation to protect water bodies. Farmer-specific DSSs, either based on modeling of P transfer source and transport mechanisms, or when coupled with farm-specific information or local knowledge, have typically guided best practices, education, and implementation, yet applying DSSs in data poor catchments and/or where user adoption is poor hampers the effectiveness of these systems. Recent developments focused on integrated digital mapping of hydrologically sensitive areas and critical source areas, sometimes using real-time data and weather forecasting, have rapidly advanced runoff modeling and education. Advances in technology related to monitoring, imaging, sensors, remote sensing, and analytical instrumentation will facilitate the development of DSSs that can predict heterogeneity over wider geographical areas. However, significant challenges remain in developing DSSs that incorporate "big data" in a format that is acceptable to users, and that adequately accounts for catchment variability, farming systems, and farmer behavior. Future efforts will undoubtedly focus on improving efficiency and conserving phosphate rock reserves in the face of future scarcity or prohibitive cost. Most importantly, the principles reviewed here are critical for sustainable agriculture.
Combating eutrophication requires changes in land and water management in agricultural catchments and implementation of mitigation measures to reduce phosphorus (P), nitrogen (N) and suspended sediment (SS) losses. To date, such mitigation measures have been built in many agricultural catchments, but there is a lack of studies evaluating their effectiveness. Here we evaluated the effectiveness of mitigation measures in a clay soil-dominated headwater catchment by combining the evaluation of long-term and high-frequency data with punctual measurements upstream and downstream of three mitigation measures: lime-filter drains, a two-stage ditch, and a sedimentation pond. Long-term hydrochemical data at the catchment outlet showed a significant decrease in P (-15%) and SS (-28%) and an increase in nitrate nitrogen (NO-N, +13%) concentrations. High-frequency (hourly) measurements with a wet-chemistry analyzer (total and reactive P) and optical sensor (NO-N and SS) showed that the catchment is an abundant source of nutrients and sediments and that their transport is exacerbated by prolonged drought and resuspension of stream sediments during storm events. Lime-filter drains showed a decrease in SS by 76% and total P by 80% and an increase in NO-N by 45% compared with traditional drains, potentially indicating pollution swapping. The effectiveness of two-stage ditch and sedimentation pond was less evident and depended on the prevalent hydrometeorological conditions that drove the resuspension of bed sediments and associated sediment-bound P transport. These results suggest that increased frequency of prolonged drought due to changing weather patterns and resuspension of SS and sediment-bound P during storm events can override the generally positive effect of mitigation measures.
Concentrations of phosphorus (P), the main limiting nutrient in freshwater ecosystems, need to be reduced, but this is difficult due to high spatial and temporal variations and limited resources. Reliable targeting of critical source areas, such as erosion-prone fields and parts of fields, is necessary to improve the cost efficiency of mitigation measures. We used high-resolution (2 m × 2 m) distributed modelling to calculate erosion risk for a large area (202 279 km2) covering > 90% of Swedish arable land. Comparison of model results with independent farmers’ observations in a pilot catchment showed high spatial agreement. The modelled worst case scenario produced reasonable quantitative results comparable to measured 90th percentile values of suspended sediment (SS) loads at both field and small catchment scale (R2 = 0.81, p < 0.001). Overall, loads of SS, especially during extreme episodes, strongly governed losses of unreactive P and total P at both field and catchment scale.
In this paper, we outline several recent insights for the priorities and challenges for future research for reducing phosphorus (P) based water eutrophication in the agricultural landscapes of Northwest Europe. We highlight that new research efforts best be focused on headwater catchments as they are a key influence on the initial chemistry of the larger river catchments, and here many management interventions are most effectively made. We emphasize the lack of understanding on how climate change will impact on P losses from agricultural landscapes. Particularly, the capability to disentangle current and future trends in P fluxes, due to climate change itself, from climate driven changes in agricultural management practices and P inputs. Knowing that, future climatic change trajectories for Western Europe will accelerate the release of the most bioavailable soil P. We stress the ambiguities created by the large varieties of sources and storage/transfer processes involved in P emissions in landscapes and the need to develop specific data treatment methods or tracers able to circumvent them, thereby helping catchment managers to identify the ultimate P sources that most contribute to diffuse P emissions. We point out that soil and aqueous P exist not only in various chemical forms, but also in range of less considered physical forms e. g., dissolved, nanoparticulate, colloidal and other particulates, all affected differently by climate as well as other environmental factors, and require bespoke mitigation measures. We support increased high resolution monitoring of headwater catchments, to not only help verify the effectiveness of catchments mitigation strategies, but also add data to further develop new water quality models (e.g., those include Fe-P interactions) which can deal with climate and land use change effects within an uncertainty framework. We finally conclude that there is a crucial need for more integrative research efforts to deal with our incomplete understanding of the mechanisms and processes associated with the identification of critical source areas, P mobilization, delivery and biogeochemical processing, as otherwise even highintensity and high-resolution research efforts will only reveal an incomplete picture of the full global impact of the terrestrial derived P on downstream aquatic and marine ecosystems.
Abstract Diffuse phosphorus (P) losses from arable land need to be reduced in a cost-efficient way, taking into account their temporal and spatial variability. This study, based on 16 farms across southern Sweden, examined possibilities for identifying critical source areas for P losses based on the combined results of high-resolution erosion modelling, independent risk assessments by farmers, soil survey and SWOT analysis performed by farmers. Statistically significant differences in dissolved P release were found between soil P test classes in the studied area, whereas soil textural classes and not P content governed potential mobilisation of soil particles and unreactive P. Spatial comparison of problem areas identified by farmers and modelled features showed that the modelled erosion pathways intersected 109 in a total of 128 (85%) observed problem areas. The study demonstrates the value in involving farmers in the identification of critical source areas in order to select and support implementation of effective countermeasures.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više