Patients with cancer have a higher risk of severe coronavirus disease (COVID-19) and associated mortality than the general population. Owing to this increased risk, patients with cancer have been prioritized for COVID-19 vaccination globally, for both primary and booster vaccinations. However, given that these patients were not included in the pivotal clinical trials, considerable uncertainty remains regarding vaccine efficacy, and the extent of humoral and cellular immune responses in these patients, as well as the risks of vaccine-related adverse events. In this Review, we summarize the current knowledge generated in studies conducted since COVID-19 vaccines first became available. We also highlight critical points that might affect vaccine efficacy in patients with cancer in the future. Vaccination against COVID-19 confers robust protection from severe disease. However, the extent to which this applies to patients with cancer remains uncertain given that these patients were excluded from most of the pivotal studies. In this Review, the authors provide an overview of the efficacy and immunogenicity of COVID-19 vaccines in patients with cancer, and discuss alternatives to vaccination for those who might be unable to develop a proficient immune response following vaccination. Vaccination against COVID-19 administered according to current prime–boost concepts is both safe and clinically effective in patients with cancer. To date, no reliable correlate of protection that allows the definite deduction of clinical efficacy from immune responses has been established, either in patients with cancer or in the general population. Patient-associated factors such as advanced age, haematological malignancy and/or treatment-associated factors such as B cell depletion might all lead to less proficient immune responses following vaccination. Future research will determine the necessity of further booster regimens as well as therapeutic options for those who do not benefit from active COVID-19 vaccination. Vaccination against COVID-19 administered according to current prime–boost concepts is both safe and clinically effective in patients with cancer. To date, no reliable correlate of protection that allows the definite deduction of clinical efficacy from immune responses has been established, either in patients with cancer or in the general population. Patient-associated factors such as advanced age, haematological malignancy and/or treatment-associated factors such as B cell depletion might all lead to less proficient immune responses following vaccination. Future research will determine the necessity of further booster regimens as well as therapeutic options for those who do not benefit from active COVID-19 vaccination.
In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole genome sequencing (WGS). We now introduce MRD-EDGE, a composite machine learning-guided WGS ctDNA single nucleotide variant (SNV) and copy number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGE uses deep learning and a ctDNA-specific feature space to increase SNV signal to noise enrichment in WGS by 300X compared to our previous noise suppression platform MRDetect. MRD-EDGE also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1Gb to 200Mb, thereby expanding its applicability to a wider range of solid tumors. We harness the improved performance to track changes in tumor burden in response to neoadjuvant immunotherapy in non-small cell lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal to noise enrichment in MRD-EDGE enables de novo mutation calling in melanoma without matched tumor, yielding clinically informative TF monitoring for patients on immune checkpoint inhibition.
Genetic intra-tumour heterogeneity fuels clonal evolution, but our understanding of clinically relevant clonal dynamics remain limited. We investigated spatial and temporal features of clonal diversification in clear cell renal cell carcinoma through a combination of modelling and real tumour analysis. We observe that the mode of tumour growth, surface or volume, impacts the extent of subclonal diversification, enabling interpretation of clonal diversity in patient tumours. Specific patterns of proliferation and necrosis explain clonal expansion and emergence of parallel evolution and microdiversity in tumours. In silico time-course studies reveal the appearance of budding structures before detectable subclonal diversification. Intriguingly, we observe radiological evidence of budding structures in early-stage clear cell renal cell carcinoma, indicating that future clonal evolution may be predictable from imaging. Our findings offer a window into the temporal and spatial features of clinically relevant clonal evolution. A combined modelling and tumour analysis approach is used to study the temporal and spatial patterns of subclone evolution in the TRACERx renal study. Studying the tumour shape and spatial features of clonal diversity in early-stage tumours may allow the prediction of tumour progression and patterns of subclone diversification over time.
Not all patients with cancer, in particular those with hematogic malignancies, develop functional immunity against SARS-CoV-2 variants of concern (VOC) following COVID-19 vaccines. Durability of vaccine-induced immunity after two doses and the impact of a third dose were evaluated in CAPTURE (NCT03226886), a longitudinal prospective cohort study of vaccine responses in patients with cancer. In evaluating 316 patients, at a median of 111 days following two doses of either BNT16b2 or ChadOX, we observed a time-dependant decline in neutralising antibody titres (NAbT) in a proportion of patients, where NAbTs became undetectable against Delta and Beta in 17% and 15% of patients, respectively. Vaccine-induced T cell responses declined in 44% of patients. Patients with breakthrough infections following two vaccines doses were characterised by absent/low NAbT to Delta prior to infection. Administration of the third vaccine dose boosted NAb responses against VOC in the majority of patients with cancer, especially those with solid cancer. In patients with hematologic malignancies who had undetectable NAbT against Delta after two vaccine doses, 54% did not develop NAb against both Beta and Delta following the third dose. Third vaccine dose boosted T cell responses were boosted in patients with both solid and hematologic malignancies. These results provide critical information on vaccine responses in patients with cancer, especially against VOCs and support widespread access to a third COVID-19 vaccination in this patient group.
Ex-vivo expanded tumour infiltrating lymphocytes (TIL) show promise in delivering durable responses among several solid tumour indications. However, characterising, quantifying and tracking the active component of TIL therapy remains challenging as the expansion process does not distinguish between tumour reactive and bystander T-cells. Achilles Therapeutics has developed ATL001, a patient-specific TIL-based product, manufactured using the VELOS™ process that specifically targets clonal neoantigens present in all tumour cells within a patient. Two Phase I/IIa clinical trials of ATL001 are ongoing in patients with advanced Non-Small Cell Lung Cancer, CHIRON (NCT04032847), and metastatic or recurrent melanoma, THETIS (NCT03997474). Extensive product characterisation and immune-monitoring are performed through Achilles’ manufacturing and translational science programme. This enables precise quantification and characterisation of the active component of this therapy – Clonal Neoantigen T cells (cNeT) – during manufacture and following patient administration, offering unique insight into the mechanism of action of ATL001 and aiding the development of next generation processes.ATL001 was manufactured using procured tumour and matched whole blood from 8 patients enrolled in the THETIS (n=5) and CHIRON (n=3) clinical trials. Following administration of ATL001, peripheral blood samples were collected up to week 6. The active component of the product was detected via re-stimulation with clonal neoantigen peptide pools and evaluation of IFN-γ and/or TNF-α production. Deconvolution of individual reactivities was achieved via ELISPOT assays. Immune reconstitution was evaluated by flow cytometry. cNeT expansion was evaluated by restimulation of isolated PBMCs with peptide pools and individual peptide reactivities (ELISPOT).The median age was 57 (range 30 – 71) and 6/8 patients were male. The median number of previous lines of systemic anti-cancer treatment at the time of ATL001 dosing was 2.5 (range 1 – 5). Proportion of cNeT in manufactured products ranged from 0.20% - 77.43% (mean 26.78%) and unique single peptide reactivities were observed in 7 of 8 products (range 0 – 28, mean 8.6). Post-dosing, cNeTs were detected in 5/8 patients and cNeT expansion was observed in 3/5 patients.These data underscore our ability to sensitively detect, quantify and track the patient-specific cNeT component of ATL001 – during manufacture and post dosing. As the dataset matures, these metrics of detection and expansion will be correlated with product, clinical and genomic characteristics to determine variables associated with peripheral cNeT dynamics and clinical response.NCT04032847, NCT03997474The first 8 patients described have all been located within the UK and both trials (CHIRON and THETIS) have been approved by the UK MHRA (among other international bodies, e.g FDA). Additionally, these trials have been approved by local ethics boards at active sites within the UK. Patient‘s are fully informed by provided materials and investigators prior to consenting to enrol into either ATL001 trial.
Patients with cancer have higher COVID-19 morbidity and mortality. Here we present the prospective CAPTURE study, integrating longitudinal immune profiling with clinical annotation. Of 357 patients with cancer, 118 were SARS-CoV-2 positive, 94 were symptomatic and 2 died of COVID-19. In this cohort, 83% patients had S1-reactive antibodies and 82% had neutralizing antibodies against wild type SARS-CoV-2, whereas neutralizing antibody titers against the Alpha, Beta and Delta variants were substantially reduced. S1-reactive antibody levels decreased in 13% of patients, whereas neutralizing antibody titers remained stable for up to 329 days. Patients also had detectable SARS-CoV-2-specific T cells and CD4+ responses correlating with S1-reactive antibody levels, although patients with hematological malignancies had impaired immune responses that were disease and treatment specific, but presented compensatory cellular responses, further supported by clinical recovery in all but one patient. Overall, these findings advance the understanding of the nature and duration of the immune response to SARS-CoV-2 in patients with cancer.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više