Logo

Publikacije (16)

Nazad
M. Kahrimanovic, W. B. Bergmann Tiest, A. Kappers

The present study investigated the human ability to discriminate the size of 3-D objects by touch. Experiment 1 measured the just noticeable differences (JNDs) for three tasks: (1) discrimination of volume without availability of weight information, (2) discrimination of volume with weight information available, and (3) discrimination of surface area. Stimuli consisted of spheres, cubes, and tetrahedrons. For all shapes, two reference sizes were used (3.5 and 12 cm3). No significant effect of task on the discriminability of objects was found, but the effects of shape and size were significant, as well as the interaction between these two factors. Post hoc analysis revealed that for the small reference, the Weber fractions for the tetrahedron were significantly larger than the fractions for the cube and the sphere. In Experiment 2, the JNDs for haptic perception of weight were measured for the same objects as those used in Experiment 1. The shape of objects had no significant effect on the Weber fractions for weight, but the Weber fractions for the small stimuli were larger than the fractions for the large stimuli. Surprisingly, a comparison between the two experiments showed that the Weber fractions for weight were significantly larger than the fractions for volume with availability of weight information. Taken together, the results reveal that volume and weight information are not effectively combined in discrimination tasks. This study provides detailed insight into the accuracy of the haptic system in discriminating objects’ size. This substantial set of data satisfies the need for more fundamental knowledge on haptic size perception, necessary for a greater understanding of the perception of related properties, as well as of more general perceptual processes.

M. Kahrimanovic, W. B. Bergmann Tiest, A. Kappers

The influence of temporal and spatial context during haptic roughness perception was investigated in two experiments. Subjects examined embossed dot patterns of varying average dot distance. A two-alternative forced-choice procedure was used to measure discrimination thresholds and biases. In Experiment 1, subjects had to discriminate between two stimuli that were presented simultaneously to adjacent fingers, after adaptation of one of these fingers. The results showed that adaptation to a rough surface decreased the perceived roughness of a surface subsequently scanned with the adapted finger, whereas adaptation to a smooth surface increased the perceived roughness (i.e. contrast after effect). In Experiment 2, subjects discriminated between subsequent test stimuli, while the adjacent finger was stimulated simultaneously. The results showed that perceived roughness of the test stimulus shifted towards the roughness of the adjacent stimulus (i.e. assimilation effect). These contextual effects are explained by structures of cortical receptive fields. Analogies with comparable effects in the visual system are discussed.

Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više