We introduce the theory of high-order harmonic generation by aligned homonuclear diatomic cations using a strong-field approximation. The target cation is represented as a system which consists of two atomic (ionic) centres and one active electron, while the driving field is either a monochromatic or bichromatic field. For a linearly polarised driving field, we investigate the differences between the harmonic spectra obtained with a neutral molecule and the corresponding molecular cation. Due to the larger ionisation potential, the molecular cations can withstand much higher laser-field intensity than the corresponding neutral molecule before the saturation effects become significant. This allows one to produce high-order harmonics with energy in the water-window interval or beyond. Also, the harmonic spectrum provides information about the structure of the highest-occupied molecular orbital. In order to obtain elliptically polarised harmonics, we suggest that an orthogonally polarised two-colour field is employed as a driving field. In this case, we analyse the harmonic ellipticity as a function of the relative orientation of the cation in the laser field. We show that the regions with large harmonic ellipticity in the harmonic energy-orientation angle plane are the broadest for cations whose molecular orbital does not have a nodal plane. Finally, we show that the molecular cations exposed to an orthogonally polarised two-colour field represent an excellent setup for the production of elliptically polarised attosecond pulses with a duration shorter than 100 as.
Using a strong-field-approximation theory, we investigate the high-order above-threshold ionization of diatomic molecules exposed to the monochromatic and bichromatic elliptically polarized fields. We devote particular attention to the difference between the photoelectron momentum distributions obtained with fields with opposite helicity. This difference is quantified using the elliptic-dichroism parameter, which represents the normalized difference between the differential ionization rates calculated with driving fields with opposite helicity. We find that this parameter strongly depends on the molecular orientation with respect to the laser field. In addition, this dependence is different for molecules with different types of highest-occupied molecular orbital. In other words, we show that the molecular structure is imprinted onto the elliptic-dichroism parameter for both monochromatic and bichromatic driving fields. This is explained by analyzing the interferences between various partial contributions to the differential ionization rate. In this way, elliptic dichroism also serves as a tool to analyze the electron dynamics. Finally, for heteronuclear diatomic molecules, we show that the elliptic dichroism is different from zero even for the direct electrons, i.e., the electrons that after liberation go directly to the detector. In this case, the dependence on the molecular orientation is far more pronounced for a bichromatic driving field.
When exposed to strong laser fields, atoms or molecules can absorb more photons from the laser field than is necessary for ionization. This process is called above-threshold ionization (ATI). In analyzing this process, the strong-field approximation (SFA) turns out to be a very useful theoretical tool. In the SFA the differential ionization rate, which is an observable quantity, can be expressed as an integral over the ionization time and can be calculated by numerical integration (NI) or using the saddle-point method (SPM). When we use the Slater orbitals to describe the ground-state wave function of the valence electron, the results obtained using the SPM and NI do not agree. We find the reasons for this disagreement and introduce a modified SPM that leads to excellent agreement between the SPM and NI results for various strong laser fields.
The contributions of two energetically highest molecular orbitals to the harmonic emission rate are analysed for a two-component laser field. For diatomic molecules exposed to the elliptically polarised field, the emission from the highest-occupied molecular orbital (HOMO) is dominant for various molecular orientations with respect to the laser field. However, the contribution of the lower molecular orbital (HOMO-1) can become significant or even dominant for some molecular orientations. We introduce the ratio of the coherent over the incoherent sum of the HOMO and HOMO-1 contributions as a quantitative measure of the significance of the particular molecular orbital. Also, the gaseous medium response is different for the left and right elliptically polarised light and the molecular characteristics are imprinted into this difference. Moreover, for the orthogonally polarised two-colour (OTC) laser field the relative contributions of HOMO and HOMO-1 depend to a great extent on the relative phase between the field components. The importance of the HOMO-1 can be assessed by the relative error which is made if the harmonic spectra are obtained only with the HOMO contribution. Finally, we investigate the interference of the contributions of two highest molecular orbitals. We show that, for the OTC field, the destructive interference depends linearly on the intensity of the field components. Also, the interference minima shift towards the higher energies with the increase of the component wavelength.
In the present paper, we study the high-order above-threshold ionization of noble-gas atoms using a bi-elliptic orthogonal two-color (BEOTC) field. We give an overview of the SFA theory and calculate the differential ionization rate for various values of the laser field parameters. We show that the ionization rate strongly depends on the ellipticity and the relative phase between two field components. Using numerical optimization, we find the values of ellipticity and relative phase that maximize the ionization rate at energies close to the cutoff energy. To explain the obtained results, we present, to the best of our knowledge, for the first time the quantum-orbit analysis in the BEOTC field. We find and classify the saddle-point (SP) solutions and study their contributions to the total ionization rate. We analyze quantum orbits and corresponding velocities to explain the contribution of relevant SP solutions.
In the strong-field ionization of atomic and molecular systems, the photoelectron is exposed to the long-range Coulomb force which is neglected in the standard theories based on the strong-field approximation (SFA). We introduce an ansatz which takes into account the Coulomb effects and at the same time is as simple as the standard SFA. Our Coulomb distorted plane wave-Volkov approximation provides analytical expressions for the relevant matrix elements. We also present a generalization of this approximation taking into account first-order term of an expansion in the atomic potential. Similarly as in the standard improved SFA, this generalized approximation describes well the rescattering plateau and the cutoff observed in the photoelectron spectra. Our new approximation is illustrated with numerical examples of strong-field ionization of the hydrogen atom exposed to linearly and circularly polarized laser pulses. The spectra obtained are slightly flatten in comparison with the SFA spectra and this effect is stronger for shorter laser wavelengths.
Nondipole effects occurring in the process of atomic ionization by an intense, mid‐infrared, counter‐rotating bicircular laser field are investigated using the strong‐field approximation with leading‐order nondipole corrections. The time integrals appearing in the expression for the differential ionization rate are computed in two ways: numerically, and by applying the saddle‐point approximation. The nondipole corrections introduce an asymmetry in the photoelectron momentum distribution along the field propagation direction. The asymmetry is quantified by the partial average value of the propagation‐direction momentum component of the photoelectrons and by the normalized difference of the differential ionization rates computed including and excluding the nondipole corrections. Using the saddle‐point approximation, it is investigated how the nondipole corrections change the solutions for direct photoelectrons and how this affects the momentum spectra. The impact of nondipole corrections increases with increasing photoelectron energy. Analysis of the complete photoelectron spectra including both direct and rescattered photoelectrons shows that, in the low‐energy region, a shift against the propagation direction occurs. The partial average of the propagation–direction momentum component in the rescattering region exhibits a plateau structure and also a local minimum structure that was recently observed in an experiment with a linearly polarized laser field (Lin et al., Phys Rev. Lett. 128, 023201 (2022)).
Using the CO molecule as target, we investigate high-order harmonic generation by a bichromatic elliptically polarized laser field. This field consists of two elliptically polarized components with the commensurable frequencies and mutually orthogonal semi-major axes. Both odd and even harmonics are emitted and their ellipticity can be large depending on the values of the laser-field parameters. It is often the case that the ellipticity of subsequent odd and even harmonics is substantially different so that, in order to produce a series of high-order harmonics with similar ellipticity, it is beneficial if the emission of odd or even harmonics is suppressed. In this paper we explore how this can be achieved using the ellipticity of the laser-field components and the relative phase as control parameters. For some values of these parameters it is possible to produce a comb of odd or even harmonics with similar ellipticity. These harmonics can later be employed for various applications the example of which is the generation of an elliptically polarized attosecond pulse train.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više