Unlike classical artificial neural networks, which require retraining for each new set of parametric inputs, the Deep Operator Network (DeepONet), a lately introduced deep learning framework, approximates linear and nonlinear solution operators by taking parametric functions (infinite-dimensional objects) as inputs and mapping them to complete solution fields. In this paper, two newly devised DeepONet formulations with sequential learning and Residual U-Net (ResUNet) architectures are trained for the first time to simultaneously predict complete thermal and mechanical solution fields under variable loading, loading histories, process parameters, and even variable geometries. Two real-world applications are demonstrated: 1- coupled thermo-mechanical analysis of steel continuous casting with multiple visco-plastic constitutive laws and 2- sequentially coupled direct energy deposition for additive manufacturing. Despite highly challenging spatially variable target stress distributions, DeepONets can infer reasonably accurate full-field temperature and stress solutions several orders of magnitude faster than traditional and highly optimized finite-element analysis (FEA), even when FEA simulations are run on the latest high-performance computing platforms. The proposed DeepONet model's ability to provide field predictions almost instantly for unseen input parameters opens the door for future preliminary evaluation and design optimization of these vital industrial processes.
Frontal polymerization (FP) is a self-sustaining curing process that enables rapid and energy-efficient manufacturing of thermoset polymers and composites. Computational methods conventionally used to simulate the FP process are time-consuming, and repeating simulations are required for sensitivity analysis, uncertainty quantification, or optimization of the manufacturing process. In this work, we develop an adaptive surrogate deep-learning model for FP of dicyclopentadiene (DCPD), which predicts the evolution of temperature and degree of cure orders of magnitude faster than the finite-element method (FEM). The adaptive algorithm provides a strategy to select training samples efficiently and save computational costs by reducing the redundancy of FEM-based training samples. The adaptive algorithm calculates the residual error of the FP governing equations using automatic differentiation of the deep neural network. A probability density function expressed in terms of the residual error is used to select training samples from the Sobol sequence space. The temperature and degree of cure evolution of each training sample are obtained by a 2D FEM simulation. The adaptive method is more efficient and has a better prediction accuracy than the random sampling method. With the well-trained surrogate neural network, the FP characteristics (front speed, shape, and temperature) can be extracted quickly from the predicted temperature and degree-of-cure fields.
Crystal plasticity (CP) simulations are a tool for understanding how microstructure morphology and texture affect mechanical properties and are an essential component of elucidating the structure-property relations. However, it can be computationally expensive. Hence, data-driven machine learning models have been applied to predict the mean-field response of a polycrystal representative volume element to reduce computation time. In this work, we proposed a novel Deep Operator Network (DeepONet) architecture for predicting microstructure stress-strain response. It employs a convolutional neural network in the trunk to encode the microstructure. To account for different material properties, boundary conditions, and loading, we proposed using single crystal stress-strain curves as inputs to the branch network, furnishing a material-response-informed DeepONet. Using four numerical examples, we demonstrate that the current DeepONet can be trained on a single material and loading and then generalized to new conditions via transfer learning. Results show that using single crystal responses as input outperforms a similar model using material properties as inputs and overcomes limitations with changing boundary conditions and temporal resolution. In all cases, the new model achieved a $R^2$ value of above 0.99, and over 95\% of predicted stresses have a relative error of $\le$ 5\%, indicating superior accuracy. With as few as 20 new data points and under 1min training time, the trained DeepONet can be fine-tuned to generate accurate predictions on different materials and loading. Once trained, the prediction speed is almost $1\times10^{4}$ times faster the CP simulations. The efficiency and high generalizability of our DeepONet render it a powerful data-driven surrogate model for CP simulations in multi-scale analyses.
The deep operator network (DeepONet) structure has shown great potential in approximating complex solution operators with low generalization errors. Recently, a sequential DeepONet (S-DeepONet) was proposed to use sequential learning models in the branch of DeepONet to predict final solutions given time-dependent inputs. In the current work, the S-DeepONet architecture is extended by modifying the information combination mechanism between the branch and trunk networks to simultaneously predict vector solutions with multiple components at multiple time steps of the evolution history, which is the first in the literature using DeepONets. Two example problems, one on transient fluid flow and the other on path-dependent plastic loading, were shown to demonstrate the capabilities of the model to handle different physics problems. The use of a trained S-DeepONet model in inverse parameter identification via the genetic algorithm is shown to demonstrate the application of the model. In almost all cases, the trained model achieved an $$R^2$$ R 2 value of above 0.99 and a relative $$L_2$$ L 2 error of less than 10% with only 3200 training data points, indicating superior accuracy. The vector S-DeepONet model, having only 0.4% more parameters than a scalar model, can predict two output components simultaneously at an accuracy similar to the two independently trained scalar models with a 20.8% faster training time. The S-DeepONet inference is at least three orders of magnitude faster than direct numerical simulations, and inverse parameter identifications using the trained model are highly efficient and accurate.
The deep energy method (DEM), a type of physics-informed neural network, is evolving as an alternative to finite element analysis. It employs the principle of minimum potential energy to predict an object’s behavior under various boundary conditions. However, the model’s accuracy is contingent upon choosing the appropriate architecture for the model, which can be challenging due to the high interactions between hyperparameters, large search space, difficulty in identifying objective functions, and non-convex relationships with the objective functions. To improve DEM’s accuracy, we first introduce random Fourier feature (RFF) mapping. RFF mapping helps during the model’s training by reducing bias toward high frequencies. The effects of six hyperparameters are then studied under static compression, tension, and bending loads in planar linear elasticity. Based on this study, a systematic automated hyperparameter optimization approach is proposed. Due to the high interaction between hyperparameters and the non-convex nature of the optimization problem, Bayesian optimization algorithms are used. The models trained using optimized hyperparameters and having Fourier feature mapping can accurately predict deflections compared to finite element analysis. Additionally, the deflections obtained for tension and compression load cases are more sensitive to variations in hyperparameters than bending.
A state-of-the-art large eddy simulation code has been developed to solve compressible flows in turbomachinery. The code has been en-gineered with a high degree of scalability, enabling it to effectively leverage the many-core architecture of the new Sunway system. A consistent performance of 115.8 DP-PFLOPs has been achieved on a high-pressure turbine cascade consisting of over 1.69 billion mesh elements and 865 billion Degree of Freedoms (DOFs). By leveraging a high-order unstructured solver and its portability to large hetero-geneous parallel systems, we have progressed towards solving the
This paper introduces Cybershuttle, a new type of user-facing cyberinfrastructure that provides seamless access to a range of resources for researchers, enhancing their productivity. The Cybershuttle Research Environment is built on open source Apache Airavata software and uses a hybrid approach that integrates locally deployed agent programs with centrally hosted middleware. This enables end-to-end integration of computational science and engineering research across a range of resources, including users’ local resources, centralized university computing and data resources, computational clouds, and NSF-funded national-scale computing centers. To ensure a user-centered approach, we have designed the scientific user environments with the best user-centered design practices.
Triply periodic minimal surface (TPMS) metamaterials characterized by mathematically-controlled topologies exhibit better mechanical properties compared to uniform structures. The unit cell topology of such metamaterials can be further optimized to improve a desired mechanical property for a specific application. However, such inverse design involves multiple costly 3D finite element analyses in topology optimization and hence has not been attempted. Data-driven models have recently gained popularity as surrogate models in the geometrical design of metamaterials. Gyroid-like unit cells are designed using a novel voxel algorithm, a homogenization-based topology optimization, and a Heaviside filter to attain optimized densities of 0-1 configuration. Few optimization data are used as input-output for supervised learning of the topology optimization process from a 3D CNN model. These models could then be used to instantaneously predict the optimized unit cell geometry for any topology parameters, thus alleviating the need to run any topology optimization for future design. The high accuracy of the model was demonstrated by a low mean square error metric and a high dice coefficient metric. This accelerated design of 3D metamaterials opens the possibility of designing any computationally costly problems involving complex geometry of metamaterials with multi-objective properties or multi-scale applications.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više