Logo

Publikacije (260)

Nazad

In this paper, we analyze the impact of nonlinear high-power amplifier (HPA) on the performance of cooperative network based on orthogonal frequency division multiplexing combined with time-division multiplexing (OFDM/TDM) using minimum mean-square-error frequency-domain combining (MMSE-FDC) in a frequency-selective fading channel. We design a novel MMSE-FDC weights while taking into account the nonlinearity of HPA at source and relay. Closed-form symbol error rate and outage probability expressions are derived while approximating the residual inter-slot interference after the MMSE-FDC as a random Gaussian variable. We discuss and address the nonlinear OFDM/TDM system design issues in cooperative network using the obtained simulation and theoretical results. We show that the OFDM/TDM with MMSE-FDC can be used to reduce the impact of nonlinear HPA on overall performance of cooperative network in comparison to OFDM while providing the target quality-of-service for reduced required signal-to-noise ratio. This is because OFDM/TDM with MMSE-FDC achieves frequency diversity in addition to cooperative diversity, while reduced peak-to-average power ratio makes it more robust on nonlinear degradation due to HPA saturation in comparison to conventional OFDM.

Analog network coding (ANC) as a simple implementation of physical layer network coding based on orthogonal frequency division multiplexing (OFDM) has been proposed to increase the network capacity and reliability of bi-directional link between a pair of users. In ANC protocol, an information between a pair of users is exchanged through two orthogonal time phases (i.e., multiple-access and broadcast phases). On the other hand, the phase noise (PN) introduces phase offset and inter carrier interference (ICI) to the useful signal. Thus, in ANC scheme PN will affect the useful signal during both multiple-access and broadcast phases. In this article, we present a performance analysis of ANC scheme using OFDM in the presence of PN in frequency-selective fading channel. We derive the total composite variance of ANC scheme in the presence of PN to obtain the signal-to-interference-plus-noise ratio (SINR) expression. Then, we evaluate the system’s performance in terms of bit error rate (BER), SINR degradation, and ergodic capacity through both numerical and computer simulations. Computer simulated average BER has been consistent with the numerical results, validating the presented analysis. Our results have shown that the ANC scheme is more sensitive to the PN introduced during the broadcast phase (i.e., at destination) than during the multiple-access phase (i.e., at relay). This is because of the higher ICI to the useful signal and enhanced noise due to the imperfect self-information removal at the destination. In addition, the performance degradation of ANC scheme based on OFDM in the presence of PN is highly expressed for the PN linewidth values up to 20 Hz.

H. Gačanin, Fumiyuki Adachi

Orthogonal frequency division multiplexing (OFDM) has been adopted for several wireless network standards due to its robustness against multipath fading. Main drawback of OFDM is its high peak-to-average power ratio (PAPR) that causes a signal degradation in a peak-limiting (e.g., clipping) channel leading to a higher bit error rate (BER). At the receiver end, the effect of peak limitation can be removed to some extent to improve the system performance. In this paper, a joint iterative channel estimation/equalization and clipping noise reduction technique based on minimum mean square error (MMSE) criterion is presented. The equalization weight that minimizes the mean square error (MSE) between the signal after channel equalization and feedback signal after clipping noise reduction is derived assuming imperfect channel state information (CSI). The MSE performance of the proposed technique is theoretically evaluated. It is shown that the BER performance of OFDM with proposed technique can be significantly improved in a peak-limited and doubly-selective (i.e., time- and frequency-selective) fading channel. Copyright © 2011 John Wiley & Sons, Ltd.

Iulia Prodan, Tatsunori Obara, F. Adachi, H. Gačanin

Recently, broadband analog network coding (ANC) has intensively been studied due to its potential to increase the network capacity by exploiting the broadcasting nature of the wireless channel. However, channel state information (CSI) knowledge is required for self-information removal and signal detection. A low-complexity pilot-assisted channel estimation (PACE) scheme has been presented for broadband ANC, where feedback of the CSI estimates from the relay to the users is required. In this study, we propose a PACE scheme without CSI feedback from the relay for broadband ANC using orthogonal frequency-division multiplexing. In the first time slot the users transmit their respective pilots to the relay and in the second time slot the relay simply amplifies and forwards the received pilot signals to both users. Each user can then estimate all the CSI it needs for self-information removal and coherent signal detection, without requiring any feedback of the CSI estimates from the relay. We theoretically analyze the channel estimator’s mean square error (MSE) performance and evaluate the bit error rate (BER) and throughput performance of broadband ANC using the proposed PACE by computer simulation. The results show that the increase in the MSE of the proposed CE scheme causes only a slight BER performance degradation compared to the conventional PACE scheme with ideal feedback. However, the benefit of eliminating the CSI feedback can be seen in the throughput performance.

H. Gačanin, F. Adachi

There has been greatly increasing interest in orthogonal frequency division multiplexing (OFDM) for broadband wireless transmission due to its robustness against multipath fading. However, OFDM signals have high peak-to-average power ratio (PAPR), and thus, a power amplifier must be operated with a large input power backoff (IBO). Recently, OFDM combined with time division multiplexing (OFDM/TDM) using minimum mean square error-frequency domain equalization (MMSE-FDE) has been presented to reduce the PAPR, while improving the bit error rate (BER) performance of conventional OFDM. In this article, by extensive computer simulation, we present a comprehensive performance comparison of OFDM-based schemes in a nonlinear and frequency-selective fading channel. We discuss about the transmission performance of OFDM-based schemes with respect to the transmit peak-power, the achievable capacity, the BER performance, and the signal bandwidth. Our results show that OFDM/TDM using MMSE-FDE achieves a lower peak-power and capacity than conventional OFDM, which means significant reduction of amplifier transmit-power backoff, but with a slight decrease in signal bandwidth occupancy.

Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više