Logo

Publikacije (260)

Nazad
Khaled Maaiuf Rabie, B. Adebisi, H. Gačanin, Serhan Yarkan

This paper provides a comprehensive analysis of the energy efficiency performance for different relaying schemes over the non-Gaussian power line communication (PLC) channel. Specifically, amplify-and-forward (AF), decode-and-forward (DF), selective DF (SDF) and incremental DF (IDF) relaying systems are investigated. For a more realistic scenario, the power consumption profile of the PLC modems is assumed to consist of both dynamic and static power. For each system, we derive accurate analytical expressions for the outage probability and the minimum energy-per-bit performance. For the sake of comparison and completeness as well as to quantify the achievable gains, we also analyze the performance of a single-hop PLC system. Monte Carlo simulations are provided throughout this paper to validate the theoretical analysis. Results reveal that AF relaying over the non-Gaussian PLC channel does not always enhance the performance and that the IDF PLC system offers the best performance compared to all other schemes considered. It is also shown that increasing the channel variance, which is related to the PLC network branching, and impulsive noise probability can considerably deteriorate the system performance. Furthermore, when the end-to-end distance is relatively small, it is found that the single-hop PLC approach can perform better than AF relaying.

Shaoyi Xu, Yan Li, Yuan Gao, Yang Liu, H. Gačanin

To alleviate the problem of scarce spectrum resources and meet the ever-increasing of mobile broadband data traffic demands, Licensed Assisted Access (LAA)-Long Term Evolution (LTE), operating in the unlicensed spectrum, is a promising solution. Considering that the unlicensed spectrum is shared by a few incumbent systems, such as IEEE 802.11 (i.e., WiFi), one main target is to guarantee the friendly and harmonious coexistence of LTE with other wireless systems in the unlicensed spectrum. Both listen-before-talk (LBT) and duty cycle methods are regarded as effective ways to solve the coexistence problem in academia and industry so far. Although there are a large number of theoretical researches on LTE in unlicensed spectrum (LTE-U), field trail results are still lacking. In this paper, an experimental testing platform is deployed to model the realistic environment. This paper focuses on three aspects. First, a typical indoor field trial scenario in 5.8 GHz unlicensed bands is deployed, and the performance of LTE-U and WiFi, including coverage and capacity, is evaluated. Specifically, a methodology to determine the proper clear channel assessment energy detection (CCA-ED) threshold for LTE-U is proposed to implement the friendly coexistence between LTE-U and WiFi systems. Second, supplementary downlink (SDL) and Cell ON/OFF mechanisms are investigated to verify the fair coexistence between LAA and WiFi in the unlicensed spectrum. Third, the Enhanced Cell ON/OFF scheme, which introduces Clear to Send (CTS)-to-Self (CTS2S) message, is discussed and evaluated. Based on the built testbed, we obtain threefold conclusions. First of all, introducing LTE into unlicensed spectrums can greatly improve the spectrum efficiency and optimize wireless resources. Furthermore, test results and analyses show that a proper CCA-ED threshold is necessary for coexisting friendly and fairly among different systems, and experiments are also provided to validate the feasibility of the suggested method in various scenarios. Second, experimental results show that SDL mechanism guarantees relatively friendly and harmonious coexistence between LAA and WiFi only in the sparse scenario, while basic Cell ON/OFF mechanism is more effective to ensure coexistence between LAA and WiFi than the SDL. Finally, with the introduction of CTS2S message, the Enhanced Cell ON/OFF scheme is able to achieve more peaceful coexistence between LTE and WiFi users employed in the same bands compared with the Basic Cell ON/OFF scheme.

Khaled, M., Rabie, B. Adebisi, H. Gačanin, G. Nauryzbayev, Young-June Choi

Relaying over power line communication (PLC) channels can considerably enhance the performance and reliability of PLC systems. This paper is dedicated to study and analyze the energy efficiency of multi-hop cooperative relaying PLC systems. Incremental decode-and-forward (IDF) relying is exploited to reduce the transmit power consumption. The PLC channel is assumed to experience log-normal fading with impulsive noise. The performances of single-hop and conventional DF relaying systems are also analyzed in terms of outage probability and energy efficiency for which analytical expressions are derived. Results show that using more relays can improve the outage probability performance; however, this is achieved at the expense of increased power consumption due to the increased static power of the relays, especially when the total source-to-destination distance is relatively small. Results also demonstrate that the IDF PLC system has better energy efficiency performance compared to the other schemes.

Olamide Jogunola, Augustine Ikpehai, K. Anoh, B. Adebisi, Mohammad Hammoudeh, H. Gačanin, Georgina Harris

Rising awareness and emergence of smart technologies have inspired new thinking in energy system management. Whilst integration of distributed energy resources in micro-grids (MGs) has become the technique of choice for consumers to generate their energy, it also provides a unique opportunity to explore energy trading and sharing amongst them. This paper investigates peer-to-peer (P2P) communication architectures for prosumers’ energy trading and sharing. The performances of common P2P protocols are evaluated under the stringent communication requirements of energy networks defined in IEEE 1547.3-2007. Simulation results show that the structured P2P protocol exhibits a reliability of 99.997% in peer discovery and message delivery whilst the unstructured P2P protocol yields 98%, both of which are consistent with the requirements of MG applications. These two architectures exhibit high scalability with a latency of 0.5 s at a relatively low bandwidth consumption, thus, showing promising potential in their adoption for prosumer to prosumer communication.

Khaled Maaiuf Rabie, B. Adebisi, H. Gačanin, G. Nauryzbayev, Augustine Ikpehai

Relaying over power line communication (PLC) channels can considerably enhance the performance and reliability of PLC systems. This paper is dedicated to study and analyze the energy efficiency of multi-hop cooperative relaying PLC systems. Incremental decode-and-forward (IDF) relying is exploited to reduce the transmit power consumption. The PLC channel is assumed to experience log-normal fading with impulsive noise. The performances of single-hop and conventional DF relaying systems are also analyzed in terms of outage probability and energy efficiency for which analytical expressions are derived. Results show that using more relays can improve the outage probability performance; however, this is achieved at the expense of increased power consumption due to the increased static power of the relays, especially when the total source-to-destination distance is relatively small. Results also demonstrate that the IDF PLC system has better energy efficiency performance compared to the other schemes.

António J. Morgado, K. Huq, Jonathan Rodriguez, C. Politis, H. Gačanin

K. Anoh, B. Adebisi, Khaled Maaiuf Rabie, Mohammad Hammoudeh, H. Gačanin

Generally, the probability density function (PDF) of orthogonal frequency division multiplexing (OFDM) signal amplitudes follow the Rayleigh distribution, thus, it is difficult to correctly predict the existence of impulsive noise (IN) in powerline communication (PLC) systems. Compressing and expanding the amplitudes of some of these OFDM signals, usually referred to as companding, is a peak-to-average power ratio reduction technique that distorts the amplitudes of OFDM signals towards a uniform distribution. We suggest its application in PLC systems, such as IEEE 1901 powerline standard (which uses OFDM) to reduce the impacts of IN. This is because the PLC channel picks up impulsive interference that the conventional OFDM driver cannot combat. We explore, therefore, five widely used companding schemes that convert the OFDM signal amplitude distribution to uniform distribution to avail the mitigation of IN in PLC system receivers by blanking, clipping and their hybrid (clipping-blanking). We also apply nonlinear optimization search to find the optimal mitigation thresholds and results show significant improvement in the output signal-to-noise ratio (SNR) for all companding transforms considered of up to 4 dB SNR gain. It follows that the conventional PDF leads to false IN detection, which diminishes the output SNR when any of the above three nonlinear memoryless mitigation schemes is applied.

Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više