Logo

Publikacije (21)

Nazad
Yuri Gardinazzi, Roger Gonzaléz March, Suprabhath Kalahasti, Andrea Montaño Ramirez, Matteo Neri, Cicely Nguyen, Giovanni Palermo, Erik Weis et al.

Comorbidity networks, which capture disease-disease co-occurrence usually based on electronic health records, reveal structured patterns in how diseases cluster and progress across individuals. However, how these networks evolve across different age groups and how this evolution relates to properties like disease prevalence and mortality remains understudied. To address these issues, we used publicly available comorbidity networks extracted from a comprehensive dataset of 45 million Austrian hospital stays from 1997 to 2014, covering 8.9 million patients. These networks grow and become denser with age. We identified groups of diseases that exhibit similar patterns of structural centrality throughout the lifespan, revealing three dominant age-related components with peaks in early childhood, midlife, and late life. To uncover the drivers of this structural change, we examined the relationship between prevalence and degree. This allowed us to identify conditions that were disproportionately connected to other diseases. Using betweenness centrality in combination with mortality data, we further identified high-mortality bridging diseases. Several diseases show high connectivity relative to their prevalence, such as iron deficiency anemia (D50) in children, nicotine dependence (F17), and lipoprotein metabolism disorders (E78) in adults. We also highlight structurally central diseases with high mortality that emerge at different life stages, including cancers (C group), liver cirrhosis (K74), subarachnoid hemorrhage (I60), and chronic kidney disease (N18). These findings underscore the importance of targeting age-specific, network-central conditions with high mortality for prevention and integrated care.

Ola Ali, Elma Dervić, Guillermo Prieto-Viertel, Carsten Källner, Rainer Stütz, Andrea Vismara, R. P. Curiel

Legal systems shape not only the recognition of migrants and refugees but also the pace and stability of their integration. Refugees often shift between multiple legal classifications, a process we refer to as the"legal journey". This journey is frequently prolonged and uncertain. Using a network-based approach, we analyze legal transitions for over 350,000 migrants in Austria (2022 to 2024). Refugees face highly unequal pathways to stability, ranging from two months for Ukrainians to nine months for Syrians and 20 months for Afghans. Women, especially from these regions, are more likely to gain protection; Afghan men wait up to 30 months on average. We also find that those who cross the border without going through official border controls face higher exit rates and lower chances of securing stable status. We show that legal integration is not a uniform process, but one structured by institutional design, procedural entry points, and unequal timelines.

Elma Dervić, Katharina Ledebur, Stefan Thurner, Peter Klimek

Comorbidity networks have become a valuable tool to support data-driven biomedical research. Yet, studies often are severely hindered by the availability of the necessary comprehensive data, often due to the sensitivity of health care information. This study presents a population-wide comorbidity network dataset derived from 45 million hospital stays of 8.9 million patients over 17 years in Austria. We present co-occurrence networks of hospital diagnoses, stratified by age, sex, and observation period in a total of 96 different subgroups. For each of these groups we report a range of association measures (e.g., count data, and odds ratios) for all pairs of diagnoses. The dataset provides the possibility to researchers to create their own, tailor-made comorbidity networks from real patient data that can be used as a starting point in quantitative and machine learning methods. This data platform is intended to lead to deeper insights into a wide range of epidemiological, public health, and biomedical research questions.

Ola Ali, Elma Dervić, Rainer Stütz, Ljubica Nedelkoska, Rafael Prieto-Curiel

Elma Dervić, C. Matzhold, C. Egger-Danner, F. Steininger, Peter Klimek

The deployment of diverse data-generating technologies in livestock farming holds the promise of early disease detection and improved animal well-being. In this paper, we combine routinely collected dairy farm and herd data with weather and high frequency sensor data from 6 farms to predict new lameness events in various future periods, spanning from the following day to 3 weeks. A Random Forest classifier, using input features selected by the Boruta Algorithm, was used for the prediction task; effects of individual features were further assessed using partial dependence plots. We achieve precision scores of up to 93% when predicting lameness for the next 3 weeks and when using information from the last 3 weeks, combined with a balanced accuracy of 79%. Removing sensor data results have tendency to reduce the precision for predictions, especially when using information from the last one,2 or 3 weeks. Moving to a larger data set (without sensor data) of 44 farms keeps the similar balanced accuracy but reduces precision by more than 30%, revealing a substantial a trade-off in model quality between false positives (false lameness alerts) and false negatives (missed lameness events). Sensor data holds promise to further improve the precision of these models, but can be partially compensated by high resolution data from other systems, such as automated milking systems.

B. Conrady, Elma Dervić, Peter Klimek, Lars Pedersen, Mossa Merhi Reimert, Philip Rasmussen, O. Apenteng, Liza Rosenbaum Nielsen

An increasing number of countries are investigating options to stop the spread of the emerging zoonotic infection Salmonella (S.) Dublin, which mainly spreads among bovines and with cattle manure. Detailed surveillance and cattle movement data from an 11-year period in Denmark provided an opportunity to gain new knowledge for mitigation options through a combined social network and simulation modeling approach. The analysis revealed similar network trends for non-infected and infected cattle farms despite stringent cattle movement restrictions imposed on infected farms in the national control program. The strongest predictive factor for farms becoming infected was their cattle movement activities in the previous month, with twice the effect of local transmission. The simulation model indicated an endemic S. Dublin occurrence, with peaks in outbreak probabilities and sizes around observed cattle movement activities. Therefore, pre- and post-movement measures within a 1-mo time-window may help reduce S. Dublin spread.

R. P. Curiel, Ola Ali, Elma Dervić, Fariba Karimi, Elisa Omodei, Rainer Stütz, Georg Heiler, Yurij Holovatch

Abstract Migration’s impact spans various social dimensions, including demography, sustainability, politics, economy, and gender disparities. Yet, the decision-making process behind migrants choosing their destination remains elusive. Existing models primarily rely on population size and travel distance to explain the spatial patterns of migration flows, overlooking significant population heterogeneities. Paradoxically, migrants often travel long distances and to smaller destinations if their diaspora is present in those locations. To address this gap, we propose the diaspora model of migration, incorporating intensity (the number of people moving to a country), and assortativity (the destination within the country). Our model considers only the existing diaspora sizes in the destination country, influencing the probability of migrants selecting a specific residence. Despite its simplicity, our model accurately reproduces the observed stable flow and distribution of migration in Austria (postal code level) and US metropolitan areas, yielding precise estimates of migrant inflow at various geographic scales. Given the increase in international migrations, this study enlightens our understanding of migration flow heterogeneities, helping design more inclusive, integrated cities.

Elma Dervić, J. Sorger, Liuhuaying Yang, M. Leutner, A. Kautzky, Stefan Thurner, A. Kautzky-Willer, Peter Klimek

We aim to comprehensively identify typical life-spanning trajectories and critical events that impact patients’ hospital utilization and mortality. We use a unique dataset containing 44 million records of almost all inpatient stays from 2003 to 2014 in Austria to investigate disease trajectories. We develop a new, multilayer disease network approach to quantitatively analyze how cooccurrences of two or more diagnoses form and evolve over the life course of patients. Nodes represent diagnoses in age groups of ten years; each age group makes up a layer of the comorbidity multilayer network. Inter-layer links encode a significant correlation between diagnoses (p < 0.001, relative risk > 1.5), while intra-layers links encode correlations between diagnoses across different age groups. We use an unsupervised clustering algorithm for detecting typical disease trajectories as overlapping clusters in the multilayer comorbidity network. We identify critical events in a patient’s career as points where initially overlapping trajectories start to diverge towards different states. We identified 1260 distinct disease trajectories (618 for females, 642 for males) that on average contain 9 (IQR 2–6) different diagnoses that cover over up to 70 years (mean 23 years). We found 70 pairs of diverging trajectories that share some diagnoses at younger ages but develop into markedly different groups of diagnoses at older ages. The disease trajectory framework can help us to identify critical events as specific combinations of risk factors that put patients at high risk for different diagnoses decades later. Our findings enable a data-driven integration of personalized life-course perspectives into clinical decision-making.

M. Leutner, Elma Dervić, L. Bellach, Peter Klimek, Stefan Thurner, A. Kautzky

Obesity, a highly prevalent disorder and central diagnosis of the metabolic syndrome, is linked to mental health by clinical observations and biological pathways. Patients with a diagnosis of obesity may show long-lasting increases in risk for receiving psychiatric co-diagnoses. Austrian national registry data of inpatient services from 1997 to 2014 were analyzed to detect associations between a hospital diagnosis of obesity (ICD-10: E66) and disorders grouped by level-3 ICD-10 codes. Data were stratified by age decades and associations between each pair of diagnoses were computed with the Cochran-Mantel-Haenszel method, providing odds ratios (OR) and p values corrected for multiple testing. Further, directions of the associations were assessed by calculating time-order-ratios. Receiving a diagnosis of obesity significantly increased the odds for a large spectrum of psychiatric disorders across all age groups, including depression, psychosis-spectrum, anxiety, eating and personality disorders (all p _corr < 0.01, all OR > 1.5). For all co-diagnoses except for psychosis-spectrum, obesity was significantly more often the diagnosis received first. Further, significant sex differences were found for most disorders, with women showing increased risk for all disorders except schizophrenia and nicotine addiction. In addition to the well-recognized role in promoting disorders related to the metabolic syndrome and severe cardiometabolic sequalae, obesity commonly precedes severe mental health disorders. Risk is most pronounced in young age groups and particularly increased in female patients. Consequently, thorough screening for mental health problems in patients with obesity is urgently called for to allow prevention and facilitate adequate treatment.

Peter Klimek, Elma Dervić, Klaus S. Friesenbichler, M. Gerschberger, Liuhuaying Yang

Michaela Kaleta, J. Lasser, Elma Dervić, Liuhuaying Yang, J. Sorger, Donald Ruggiero Lo Sardo, S. Thurner, A. Kautzky-Willer et al.

Patients do not access physicians at random but rather via naturally emerging networks of patient flows between them. As mass quarantines, absences due to sickness, or other shocks thin out these networks, the system might be pushed to a tipping point where it loses its ability to deliver care. Here, we propose a data-driven framework to quantify regional resilience to such shocks via an agent-based model. For each region and medical specialty we construct patient-sharing networks and stress-test these by removing physicians. This allows us to measure regional resilience indicators describing how many physicians can be removed before patients will not be treated anymore. Our model could therefore enable health authorities to rapidly identify bottlenecks in access to care. Here, we show that regions and medical specialties differ substantially in their resilience and that these systemic differences can be related to indicators for individual physicians by quantifying their risk and benefit to the system. As mass quarantines, absences due to sickness, or other shocks thin out patient-physician networks, the system might be pushed to a tipping point where it loses its ability to deliver care. Here, the authors propose a data-driven framework to quantify regional resilience to such shocks via an agent-based model.

M. Leutner, Nils Haug, L. Bellach, Elma Dervić, A. Kautzky, Peter Klimek, A. Kautzky-Willer

Objectives: Diabetic patients are often diagnosed with several comorbidities. The aim of the present study was to investigate the relationship between different combinations of risk factors and complications in diabetic patients. Research design and methods: We used a longitudinal, population-wide dataset of patients with hospital diagnoses and identified all patients (n = 195,575) receiving a diagnosis of diabetes in the observation period from 2003–2014. We defined nine ICD-10-codes as risk factors and 16 ICD-10 codes as complications. Using a computational algorithm, cohort patients were assigned to clusters based on the risk factors they were diagnosed with. The clusters were defined so that the patients assigned to them developed similar complications. Complication risk was quantified in terms of relative risk (RR) compared with healthy control patients. Results: We identified five clusters associated with an increased risk of complications. A combined diagnosis of arterial hypertension (aHTN) and dyslipidemia was shared by all clusters and expressed a baseline of increased risk. Additional diagnosis of (1) smoking, (2) depression, (3) liver disease, or (4) obesity made up the other four clusters and further increased the risk of complications. Cluster 9 (aHTN, dyslipidemia and depression) represented diabetic patients at high risk of angina pectoris “AP” (RR: 7.35, CI: 6.74–8.01), kidney disease (RR: 3.18, CI: 3.04–3.32), polyneuropathy (RR: 4.80, CI: 4.23–5.45), and stroke (RR: 4.32, CI: 3.95–4.71), whereas cluster 10 (aHTN, dyslipidemia and smoking) identified patients with the highest risk of AP (RR: 10.10, CI: 9.28–10.98), atherosclerosis (RR: 4.07, CI: 3.84–4.31), and loss of extremities (RR: 4.21, CI: 1.5–11.84) compared to the controls. Conclusions: A comorbidity of aHTN and dyslipidemia was shown to be associated with diabetic complications across all risk-clusters. This effect was amplified by a combination with either depression, smoking, obesity, or non-specific liver disease.

Elma Dervić, C. Deischinger, Nils Haug, M. Leutner, A. Kautzky-Willer, Peter Klimek

Background Although men are more prone to developing cardiovascular disease (CVD) than women, risk factors for CVD, such as nicotine abuse and diabetes mellitus, have been shown to be more detrimental in women than in men. Objective We developed a method to systematically investigate population-wide electronic health records for all possible associations between risk factors for CVD and other diagnoses. The developed structured approach allows an exploratory and comprehensive screening of all possible comorbidities of CVD, which are more connected to CVD in either men or women. Methods Based on a population-wide medical claims dataset comprising 44 million records of inpatient stays in Austria from 2003 to 2014, we determined comorbidities of acute myocardial infarction (AMI; International Classification of Diseases, Tenth Revision [ICD-10] code I21) and chronic ischemic heart disease (CHD; ICD-10 code I25) with a significantly different prevalence in men and women. We introduced a measure of sex difference as a measure of differences in logarithmic odds ratios (ORs) between male and female patients in units of pooled standard errors. Results Except for lipid metabolism disorders (OR for females [ORf]=6.68, 95% confidence interval [CI]=6.57-6.79, OR for males [ORm]=8.31, 95% CI=8.21-8.41), all identified comorbidities were more likely to be associated with AMI and CHD in females than in males: nicotine dependence (ORf=6.16, 95% CI=5.96-6.36, ORm=4.43, 95% CI=4.35-4.5), diabetes mellitus (ORf=3.52, 95% CI=3.45-3.59, ORm=3.13, 95% CI=3.07-3.19), obesity (ORf=3.64, 95% CI=3.56-3.72, ORm=3.33, 95% CI=3.27-3.39), renal disorders (ORf=4.27, 95% CI=4.11-4.44, ORm=3.74, 95% CI=3.67-3.81), asthma (ORf=2.09, 95% CI=1.96-2.23, ORm=1.59, 95% CI=1.5-1.68), and COPD (ORf=2.09, 95% CI 1.96-2.23, ORm=1.59, 95% CI 1.5-1.68). Similar results could be observed for AMI. Conclusions Although AMI and CHD are more prevalent in men, women appear to be more affected by certain comorbidities of AMI and CHD in their risk for developing CVD.

Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više