Stability analysis of a certain class of difference equations by using KAM theory
By using KAM theory we investigate the stability of equilibrium points of the class of difference equations of the form xn+1=f(xn)xn−1,n=0,1,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x_{n+1}=\frac{f(x _{n})}{x_{n-1}}, n=0,1,\ldots $\end{document} , f:(0,+∞)→(0,+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f:(0,+\infty )\to (0,+\infty )$\end{document}, f is sufficiently smooth and the initial conditions are x−1,x0∈(0,+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x_{-1}, x _{0}\in (0,+\infty )$\end{document}. We establish when an elliptic fixed point of the associated map is non-resonant and non-degenerate, and we compute the first twist coefficient α1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha _{1}$\end{document}. Then we apply the results to several difference equations.