Revisiting Traditional Medicinal Plants: Integrating Multiomics, In Vitro Culture, and Elicitation to Unlock Bioactive Potential
Traditional medicinal plants are valued for their therapeutic potential, yet the full spectrum of their bioactive compounds often remains underexplored. Recent advances in multiomics technologies, including metabolomics, proteomics, and transcriptomics, combined with in vitro culture systems and elicitor-based strategies, have revolutionized our ability to characterize and enhance the production of valuable secondary metabolites. This review synthesizes current findings on the integration of these approaches to help us understand phytochemical pathways optimising bioactive compound yields. We explore how metabolomic profiling links chemical diversity with antioxidant and antimicrobial activities, how proteomic insights reveal regulatory mechanisms activated during elicitation, and how in vitro systems enable controlled manipulation of metabolic outputs. Both biotic and abiotic elicitors, such as methyl jasmonate and salicylic acid, are discussed as key triggers of phytochemical defense pathways. Further, we examine the potential of multiomics-informed metabolic engineering and synthetic biology to scale production and discover novel compounds. By aligning traditional ethnobotanical knowledge with modern biotechnology, this integrative framework offers a powerful avenue to unlock the pharmacological potential of medicinal plants for sustainable and innovative therapeutic development.