SEISMIC EVALUATION OF THE HIGH-RISE RESIDENTIAL BUILDING WITH STRUCTURAL WALLS FROM THE LATE 60’S
Extensive construction of buildings with structural system made of reinforced concrete walls had been started in the early 60s of the last century, as a continuation of the rebuild of Europe after the World War II. This was especially true in the Western Balkan region. In some way these buildings replaced multistorey masonry buildings, enabled significantly higher number of floors and a larger number of apartments. A specific construction technology with the so-called tunnel formwork was applied, which enabled rapid construction progress in terms of the height of the building. Seismic resistant structure of the buildings consisted mainly of reinforced concrete slabs and walls, whereby the reinforcement detailing was performed according to the old technical codes and the ancient state of the art of the building’s construction. Regarding the structural system, the way of the construction and structural detailing of these buildings, they can be classified as a recent historical heritage. A high-rise building in Sarajevo, with 20 residential floors, about 55 years old, with a load-bearing system made of reinforced concrete walls and slabs, almost without any beams, was analyzed. According to the modern state of the praxis, the building does not meet the requirements of contemporary seismic codes, and this especially applies to the reinforcement design and detailing. Taking into account seismic vulnerability classification of the European Macroseismic Scale the building could suffer substantial damages when exposed to the stronger earthquake motions. We tried to capture the specific design of the existing reinforced concrete walls applying more sophisticated structural models, including confined and unconfined concrete. The mechanical properties of the built-in building materials in existing slabs and walls were obtained experimentally. The results of the nonlinear analysis show a relatively satisfactory global response of the structure, but with possible damages due to the rather poor reinforcement quantity in the walls. Just to mention that some of the main structural walls possess only few longitudinal reinforcement bars in the corners. An improvement of the structural system, in order to achieve a ductile response with the dissipation of the energy introduced by the earthquake, as proposed by the latest seismic codes and recommendations, has been discussed as well.