Logo
Nazad
J. Sedlar, Riste vSkrekovski
5 7. 7. 2022.

A Note on the Locally Irregular Edge Colorings of Cacti

A graph is locally irregular if the degrees of the end-vertices of every edge are distinct. An edge coloring of a graph G is locally irregular if every color induces a locally irregular subgraph of G. A colorable graph G is any graph which admits a locally irregular edge coloring. The locally irregular chromatic index X'irr(G) of a colorable graph G is the smallest number of colors required by a locally irregular edge coloring of G. The Local Irregularity Conjecture claims that all colorable graphs require at most 3 colors for a locally irregular edge coloring. Recently, it has been observed that the conjecture does not hold for the bow-tie graph B, since B is colorable and requires at least 4 colors for a locally irregular edge coloring. Since B is a cactus graph and all non-colorable graphs are also cacti, this seems to be a relevant class of graphs for the Local Irregularity Conjecture. In this paper we establish that X'irr(G)<= 4 for all colorable cactus graphs.


Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više