The nucleosome remodeling and deacetylase-SWItch/sucrose non-fermentable antagonism regulates the coordinated activation of epithelial-to-mesenchymal transition and inflammation in oral cancer
Abstract Background Phenotypic plasticity and inflammation, 2 well-established hallmarks of cancer, play key roles in local invasion and distant metastasis by enabling the rapid adaptation of tumor cells to dynamic micro-environmental changes. Results Here, we show that in oral squamous carcinoma cell carcinoma (OSCC), the competition between the Nucleosome Remodeling and Deacetylase (NuRD) and SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complexes plays a pivotal role in regulating both epithelial-mesenchymal plasticity (EMP) and inflammation. By perturbing these complexes, we demonstrated their opposing downstream effects on the inflammatory pathways and EMP regulation. In particular, downregulation of the BRG1-specific SWI/SNF complex deregulates key inflammatory genes, such as TNF-α and IL6, in opposite ways when compared with the loss of CDK2AP1, a key member of the NuRD complex. We showed that CDK2AP1 genetic ablation triggers a pro-inflammatory secretome encompassing several chemokines and cytokines, thus promoting the recruitment of monocytes into the tumor microenvironment (TME). Furthermore, CDK2AP1 deletion stimulates their differentiation into M2-like macrophages, as validated on tumor microarrays from OSCC patient-derived tumor samples. Further analysis of the inverse correlation between CDK2AP1 expression and TME immune infiltration revealed specific downstream effects on the abundance and localization of CD68+ macrophages. Conclusions Our study sheds light on the role of chromatin remodeling complexes in OSCC locoregional invasion and highlights the potential of CDK2AP1 and other members of NuRD and SWI/SNF chromatin remodeling complexes as prognostic markers and therapeutic targets.