MASONRY WALL-RC SLAB INTERACTION UNDER SEISMIC LOADING
"In everyday engineering calculations, walls in masonry structures are typically analyzed as isolated from the rest of the structure. The corresponding gravitational load is determined, and the horizontal load is applied to the wall, assuming that floors are rigid within their plane and transfer horizontal loads according to the stiffness of the walls at the building's base. The wall's bearing capacity is verified on a model isolated from the structure, considering the effects of bending moments, normal forces, and shear forces. Spatial models that include other structural elements along with the walls are rarely created. This study focuses on slender walls, where height exceeds length, which are common in our architectural tradition. Reinforced concrete ring beams are regularly constructed at the top of such walls, transitioning into lintels or beams supporting the ceiling. The study aims to investigate whether these elements, along with the ceiling as a whole, influence wall behavior during earthquakes. Experiments and post-earthquake damage reports suggest that walls behave differently depending on the level of normal force stress. Wall behavior varies based on its position in the structure, load intensity, connections, and material and geometric characteristics. Less-loaded walls, typically on upper floors, tend to fail through full-wall rotation, with or without edge crushing. Sliding occurs with lower normal forces and high shear stresses, while diagonal fractures emerge at certain stress levels. This study develops a numerical model to explore the interaction between short walls and ceilings, especially in rocking and toe crushing, aiming to answer whether walls should be considered isolated or part of spatial frame systems."